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First, do no harm, Hippocrates (5th century BCE)

Mind the cliff, Wile E. Coyote (20th century CE)

1 Introduction

A protracted period of low real returns on safe assets followed in the wake of the Global
Financial Crisis and was only interrupted by the COVID inflation surge. The return of
low interest rates could tempt financial intermediaries to reach for higher yields by taking
excessive (or socially inefficient) risks. The risk-taking behavior that we have in mind is
epitomized by the emergence of NINJA loans in the subprime mortgage market leading up
to the Great Recession, and by the booming of leveraged loans in its aftermath.

To study these concerns, we develop a dynamic macroeconomic model in which limited
liability and deposit insurance provide incentives for a bank to shift from safe assets to risky
assets in its portfolio of loans.1 More specifically, and following Van den Heuvel (2008), our
banks can lend to safe firms or risky firms. As in that work, risky firms are exposed to
an idiosyncratic shock with negative expected value. A profit maximizing bank could fund
a firm with negative expected value only because limited liability shields it from downside
risk and because deposit insurance takes away the incentives of depositors to monitor the
activities of banks. An important extension in our model is that both safe and risky firms
face aggregate shocks, allowing the model to capture aggregate fluctuations. In response to
shocks, if capital requirements are not sufficiently high, financing risky loans can temporarily
become attractive and lead to banking crises in which some banks fail and deposit insurance
bails out depositors.2

We use the simulated method of moments to calibrate the model. Our estimation sample
runs from the first quarter of 1980 to the fourth quarter of 2024. Over this period, capital
requirements did not systematically respond to macroeconomic conditions. We model them
as a static buffer over the optimal steady-state rate. We calibrate capital requirements as
the average capital-to-asset ratio in the banking sector. We choose the parameters governing
various sources of shocks, including the volatility of idiosyncratic shocks that make risky
projects attractive, to match the average bank failure rate over the sample and other moments

1We do not analyze the optimality of either limited liability or bank deposit insurance; we simply take
them as features of the economy. Our model would not be adequate for a discussion of deposit insurance
since we exclude the possibility of bank runs.

2This is another important extension relative to Van den Heuvel (2008), who only considers excessive
risk-taking as an off-equilibrium outcome, ruled out by sufficiently high capital requirements. While that
work came on the heels of a prolonged period of stability, the more recent experience has offered painful
evidence that banking crises do still occur.
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for key macroeconomic indicators, such as the volatility of GDP and investment. We also
ensure that periods of excessive risk-taking and elevated bank failures are consistent with
the average decline in GDP relative to trend observed for such periods. In our model as in
the observed data, periods with de minimis failure rates are punctuated by crisis periods
with elevated failure rates.

Banking crises in our model have major consequences for household consumption and
business investment. Bank capital requirements can curb the risk-taking incentives that
lead to crises, and indeed changes to capital requirements continue to engage the policy and
academic communities.3 In our model, very high capital requirements force a bank to keep
enough “skin in the game” to eliminate the excessive risk-taking incentives entirely. But cap-
ital requirements also reduce bank deposits, which provide liquidity services to households.

Using this model, our contribution is to compare the performance of different rules—
including simple and implementable rules—in the realistic situation of a constellation of
shocks bombarding the economy at the same time. The best-performing rule we could de-
vise respecting the constraints of a decentralized equilibrium maximizes the liquidity value
of deposits while avoiding costly risk-taking episodes and bank failures. Accordingly, this
rule sets capital requirements just high enough for bankers to have sufficient skin in the
game to avoid excessive risk-taking and bank failures; we dub this rule “no-failure.” Beyond
the level that prevents excessive risk-taking, capital requirements would bring no additional
benefits and would supplant deposits that are valued by households for their liquidity. Unre-
alistically, this rule requires full knowledge of the shocks hitting the economy. By contrast,
simple implementable rules that adjust capital requirements in response to a few observable
macroeconomic indicators cannot always prevent crises and thus do worse despite allowing
household to hold higher deposit balances in some periods. In this context, a static buffer
turns out to be a sound, simple, and implementable policy.

So, what are the dynamic capital requirements of this best-performing rule? Triggering
a risk-taking episode would lower household utility by a discrete amount. Accordingly, a
regulator armed with perfect knowledge of the shock and the structure of the economy—faced
with aggregate and firm-specific shocks—could increase capital requirements just enough to
avoid triggering a risk-taking episode. A less-informed regulator in the real world might
be tempted to zip up to the estimate of the cliff’s edge. But this well-meaning regulator
could face a Wile E. Coyote moment, and may be better advised to exercise caution against
banking crises, or do no harm.

3Following a pause in rule making during the Covid pandemic, many jurisdictions are moving to the
finalization phase of the Basel III agreements. We review the related academic literature later in the intro-
duction.
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The no-failure rule may be intuitive even if it is not implementable, but is it optimal in
any sense? We start by showing that, for a static version of our model that excludes aggregate
shocks, the steady-state capital requirement implied by our rule is the global optimum. The
verification of global optimality in the full model is more complex. One heuristic check is
whether a flexible rule that can respond to any possible linear combination of model variables
is welfare superior. This flexible rule sets capital requirements as a function of lagged capital
requirements, all (lagged) state variables of the model, and all shock processes, including their
innovations. Choosing the coefficients of this rule to maximize welfare yields a rule that calls
for capital requirements that are perfectly correlated with the capital requirements set by
our candidate optimal rule. Admittedly, this flexible rule is optimal only in the class of linear
rules with constant coefficients.4 Moreover, by requiring a response to unobservable shocks,
this flexible rule is not implementable.

To characterize the properties of our best-performing rule, we begin by showing how
it responds to individual macroeconomic shocks. We provide examples in which our best-
performing rule would raise capital requirements: (1) during a downturn caused by a produc-
tivity shock; (2) during an expansion caused by an investment-specific shock; or (3) during
an increase in the volatility of financial market returns that has little effect on the business
cycle. So, the best-performing rule in the class of linear rules would not necessarily set cap-
ital requirements pro-, counter-, a-cyclically. This is the basic reason why, as we shall see,
simple countercyclical rules for setting capital requirements do poorly in our model.

We compare the performance of our best-performing rule with that of simple and imple-
mentable rules optimized to maximize welfare conditional on the inclusion of a small number
of aggregate indicators. Of particular interest is the Basel III guidance for setting the coun-
tercyclical capital buffer (CCyB). According to this guidance, capital requirements should
increase during periods of rapid credit expansion (or increases in the credit-to-GDP ratio),
and they should be relaxed during a credit contraction.5 This guidance—which we will call
the “Basel rule”—sounds both sensible and implementable. And indeed, some statistical
correlations would seem to support it. For example, in line with the statistical evidence that
provided the underpinnings for the Basel Rule, the credit-to-GDP ratio (weakly) predicts
GDP two years hence.6 We show that this predictability is both a feature of the observed
data and of our model. Nonetheless, grounding the statistical underpinnings for the Basel

4Ruling out the possibility that nonlinear rules that allow coefficients to vary when banks fail may enhance
welfare is beyond the scope of our paper.

5The guidelines can be found in Basel Committee on Banking Supervision (2010).
6Borio and Lowe (2002) and Borio and Lowe (2004) provided the empirical underpinnings for the Basel

III guidance. Their findings were bolstered by subsequent empirical work in Schularick and Taylor (2012),
Jordà et al. (2017), Mian et al. (2017), and Mian et al. (2020).
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guidance in a theoretical framework leads to different policy prescriptions. Optimizing this
rule results in a vanishingly small coefficient on the credit-to-GDP ratio, making the rule
indiscernible from a static buffer.

Actually, none of the simple dynamic rules that we consider improve meaningfully on the
performance of a simple static buffer. A planner allowed to optimize the coefficients of the
dynamic rules either abstains from introducing much variation in capital requirements or
compensates for that possibly misguided variation by elevating the average level of capital.
We will see that a slightly elevated static capital requirement (or buffer) largely avoids the
Wile E. Coyote moments, and it does almost as well as the optimal linear rule in welfare
terms.

There are several strands of literature related to our work. The papers by Begenau
(2020), Begenau and Landvoigt (2022), Collard et al. (2017), Martinez-Miera and Suarez
(2012), Mishin (2023), and Pancost and Robatto (2023) share the risk-shifting framework in
our model. Begenau (2020) and Pancost and Robatto (2023) —arguably the closest analyses
to our own—focus on the optimal level of static capital requirements in the steady state. Our
focus is on cyclical capital requirements, and their comparison with static buffers. Begenau
and Landvoigt (2022) and Mishin (2023) center on the interactions between regulated and
unregulated banks. Martinez-Miera and Suarez (2012) develop a model with systemic risk in
the form of a binary shock, which simplifies the theoretical derivations and numerical solu-
tion. By contrast, our model has a richer stochastic structure, important for our assessment
of simple rules, something they do not attempt. Collard et al. (2017) concentrate on inter-
actions of optimal monetary and prudential policies, in a setting that keeps bank failures
off the equilibrium path. We abstract from monetary policy, but we allow for business-cycle
fluctuations and risk-taking on the equilibrium path.

We also contribute to the body of work that shows how regime shifts can lead to discontin-
uous outcomes, financial crises, without relying on discontinuous distributions for exogenous
shocks. See, for example, Mendoza (2010), He and Krishnamurthy (2012), and Brunnermeier
and Sannikov (2014). Our approach relies on endogenous regime shifts leading to banking
crises, discontinuous events in which a large set of banks go bankrupt, and deposit insurance
intervenes to bail out depositors. Moreover, there is a literature on credit booms and busts,
including Boissay et al. (2016) and Bordalo et al. (2018). We differ mainly by not (explicitly)
modeling banking panics and by integrating the analysis within a reasonably conventional
quantitative macroeconomic framework with a clear role for capital regulation of banks.

Several influential contributions to the literature emphasize risks arising from high lever-
age and the expansion of bank credit. Davydiuk (2017) and Malherbe (2020) are examples
of this. Our work offers a complementary perspective that emphasizes the composition of
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bank credit, rather than its expansion. Gomes et al. (2023) develop a model that shares
our emphasis on risks arising from changes in the composition of bank credit, rather than
the expansion of credit. They question the premise that high leverage causes banking crises
and that curbing credit growth can prevent crises. In their model, a time-varying likelihood
of an exogenous economic crisis causes both higher leverage and the subsequent economic
decline, making policies that respond to credit growth ineffective.

Other contributions show how leverage can increase financial fragility and the risk of bank
runs. Examples include Angeloni and Faia (2013), Gertler and Kiyotaki (2015), Gertler et al.
(2020), and Faria-e-Castro (2021). We make our formal analysis stark by setting aside bank
runs, but of course we recognize the possibility of bank runs in reality.

The rest of our paper proceeds as follows. Section 2 describes the model and presents
an analytical characterization of aspects of the model’s equilibrium. Section 3 discusses the
model’s calibration and solution method. Section 4 characterizes the benchmark no-failure
capital policy and related optimality tests—our second set of important results. Section
5 presents the responses to different shocks and discusses the no-failure policy for capital
requirements. As for our final and key results, Section 6 considers the performance of some
simple implementable rules. Section 7 concludes.

2 The Model

Our model extends a standard RBC model to include banks that enjoy limited liability
and government deposit insurance. These are the main features that allow for excessive, or
socially inefficient, risk-taking, and the RBC framework allows for macroeconomic shocks
that cause business cycles.

Households value deposits and fund banks with equity. Banks provide deposits to house-
holds, enjoy limited liability and fund risky and safe firms subject to capital requirements.
All firms face aggregate shocks but those that are risky face additional idiosyncratic risk, ε,
with negative mean and positive variance. Accordingly, bank returns on loans to risky firms
are, on average, lower than the bank returns on safe loans. However, depending on the state
of the business cycle, the returns on safe loans might become depressed, and banks could
find it attractive to load up on risk because of the shield of limited liability and deposit
insurance. Therefore, such risky loans might be privately optimal, despite being socially
inefficient. Higher capital requirements can decrease socially inefficient provision of risky
loans at the expense of lower liquidity provision from deposits.

We prove analytically that individual banks allocate either the maximum share of their
loan portfolios to risky firms or the minimum share to risky firms depending on the state
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of the business cycle. We dub the former risky banks and the latter safe banks. Safe banks
do not fail, whereas risky banks fail at a rate that also varies with the state of the business
cycle.

Households solve the portfolio problem to determine the optimal supply of equity across
safe and risky banks. Since equity backs loans and banks cannot make negative loans, we
impose additional non-negativity constraints on each type of equity to prevent short selling.
The solution to this problem equalizes the expected returns across equity types. The demand
for equity is pinned down by the binding capital requirements because debt is cheaper than
equity.

The deposit insurance scheme is provided by the government and is financed through
lump-sum taxes paid by households. The lump-sum nature of these taxes makes the deposit
insurance scheme distortive. Deposit insurance and limited liability act as a subsidy for
inefficient risk because banks do not internalize the probability of their default on the cost
of borrowing. Households view deposits as perfectly safe as they do not internalize their
deposit decisions on the financing of the deposit insurance fund.

Banks are at the heart of our model, but the exposition is smoother if we begin with
the less-exciting firms and households. In what follows, small letters denote individual
households, banks or firms; capital letters represent aggregate values. Safe firms (defined
below) carry a superscript s; risky firms carry a superscript r.

2.1 Non-Financial Firms

Non-financial firms are competitive and earn zero profits. There are goods producing
firms and capital producing firms. We begin with the former.

2.1.1 Goods Producing Firms

Firms live for just two periods. A firm born in period t, obtains a bank loan, lft , to buy
the capital, kt+1, that it will use for production in period t+ 1; so,

lft = Qtkt+1, (1)

where Qt is the price of capital (or the price of investment).7 The ex-post return on the loan
is Rt+1l

f
t = Rt+1Qtkt+1, where we shall soon see that Rt+1 is the rate of return on capital

ownership. So, these bank loans might be better described as equity positions.
7We call bank contracts with the firms loans, but in truth the intermediaries issue equity contracts to the

firms, just like in Gertler and Karadi (2011).
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There is a continuum of firms of measure 1. But the firms come in two types: “safe” firms
face only aggregate shocks, while “risky” firms face both aggregate shocks and idiosyncratic
shocks.

In period t+ 1, a safe firm hires labor, hs
t+1, to produce

ys
t+1 = At+1(ks

t+1)α(hs
t+1)1−α, (2)

where At+1 is an aggregate shock to total factor productivity (TFP). When a safe firm takes
the loan in period t, it knows that the firm will hire the optimal hs

t+1 next period. So, the
safe firm chooses lf,s

t and ks
t+1 in period t, and then hs

t+1 in period t+ 1, to

max
lf,s
t ,ks

t+1

Et

{
max
hs

t+1

[
ys

t+1 + (1 − δ)Qt+1k
s
t+1 −Wt+1h

s
t+1 −Rs

t+1l
f,s
t

]}
, (3)

where δ is the capital depreciation rate, and Wt+1 is the real wage rate. This maximization
is subject to (1) and (2). The first-order conditions for this maximization problem imply

EtR
s
t+1 = αEt

At+1

Qt

(
hs

t+1
ks

t+1

)1−α

+ (1 − δ)Qt+1

Qt

 , (4)

where the first term within the brackets is the rental rate on a unit of capital, and the second
term is the capital gain on a non-depreciated unit of capital.

A risky firm employs the technology yr
t+1 = At+1

(
kr

t+1

)α (
hr

t+1

)1−α
+ εt+1k

r
t+1, where εt+1

is an idiosyncratic shock that follows a Normal distribution G with a negative mean, − ξ,

and standard deviation τt:8

PDF of εt+1, g(εt+1) = 1√
2πτ 2

t

exp
(

−(εt+1 + ξ)2

2τ 2
t

)
, (5)

CDF of εt+1, G(εt+1) = 1
2

[
1 + erf

(
εt+1 + ξ

τt

√
2

)]
.

In turn, the standard deviation τt, in deviation from its mean of τ , is governed by an
autoregressive stochastic process of order 1. This stochastic structure is analogous to that
of the risk shocks in Christiano et al. (2014).

The risky firm chooses lf,r
t and kr

t+1, and then hr
t+1, to

max
lf,r
t ,kr

t+1

Et

{
max
hr

t+1

[
yr

t+1 + (1 − δ)Qt+1k
r
t+1 −Wt+1h

r
t+1 −Rr

t+1l
f,r
t

]}
, (6)

8exp(x) = ex is the exponential function and erf(x) = 1√
π

´ x

−x
exp

(
−v2) dv = 2√

π

´ x

0 exp
(
−v2) dv.
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subject to the analogous constraints. The first-order conditions for this maximization, the
zero-profit condition for firms, and equation (8) below, imply

EtR
r
t+1 = EtR

s
t+1 − ξ

Qt

. (7)

So, the idiosyncratic shock lowers the expected value and increases the variance of the return
on a loan to a risky firm. Risky loans are socially inefficient, or in our language, excessively
risky.

Finally, note that the marginal product of labor for safe and risky firms is given by
(1 −α)At+1(ki

t+1/h
i
t+1)α where i denotes the type of firm (i ∈ {s, r}). Labor is mobile across

firms, and both types of firms face the same real wage rate. So, the first-order conditions for
labor in period t+ 1 imply the equalization of capital-labor ratios across sectors.

kr
t+1/h

r
t+1 = ks

t+1/h
s
t+1. (8)

Appendix A.3.3 provides details on the aggregation across firms; we show that there is a
representative safe firm that produces

Y s
t+1 = At+1(Ks

t+1)α(Hs
t+1)1−α, (9)

and also a representative risky firm that produces

Y r
t+1 = At+1

(
Kr

t+1

)
α
(
Hr

t+1

)1−α
− ξKr

t+1, (10)

where capital letters represent aggregate values.

2.1.2 Capital Producing Firms

At the end of period t, goods producing firms sell their capital to competitive capital
producing firms. Letting Ig

t denote gross investment, the evolution of capital follows

It = ηt

1 − ϕ

2

(
Ig

t

Ig
t−1

− 1
)2
 Ig

t , (11)

where ηt is a shock to investment-specific technology (ISP), and ϕ is a measure of the severity
of investment adjustment costs.9 The aggregate capital stock evolves according to

9We include investment adjustment costs, and later habits in consumption, to make our model fit the
data better. But they are not an integral part of the logic behind capital requirements.
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Ks
t+1 +Kr

t+1 = It + (1 − δ) (Ks
t +Kr

t ) . (12)

The capital producing firms are owned by households, and solve the problem

max
Ig

t+i

Et

∞∑
i=0

ψt,t+i

Qt+iηt+i

1 − ϕ

2

(
Ig

t+i

Ig
t+i−1

− 1
)2
 Ig

t+i − Ig
t+i

 , (13)

where ψt,t+i = β λct+i

λct
is the stochastic discount factor of the households, which are described

next.

2.2 Households

The economy is populated by a continuum of identical households, each comprising two
types of agents: workers and bankers. Workers supply labor to firms, allocate deposits across
financial intermediaries and transfer all returns to their household. Bankers manage these
intermediaries and likewise return all earnings to the household. All income—whether from
saving or banking—is fully pooled within each household, preserving the representative agent
structure.10

The representative household’s problem is

max
Ct,Dt,Es

t ,Er
t

E0

∞∑
t=0

βt

[
(Ct − κCt−1)1−ςc − 1

1 − ςc
+ ς0

D1−ςd
t − 1
1 − ςd

]
, (14)

subject to

Ct +Dt + Es
t + Er

t = Wt +Rd
t−1Dt−1 +Re,s

t Es
t−1 +Re,r

t Er
t−1 − Tt, (15)

Es
t ≥ 0,

Er
t ≥ 0.

Households value consumption, Ct, and value the liquidity services of bank deposits, Dt;
β is the discount factor; 0 < κ < 1 is the habit persistence parameter, ςc > 0 captures
the intertemporal elasticity of substitution, ς0 > 0 is the utility weight on deposits, and
ςd > 0 is the inverse elasticity of household demand for deposits with respect to changes in
the interest rate. We put deposits in the utility function in lieu of modeling a particular
transaction technology. For simplicity, we assume that households supply labor inelastically,

10A detailed exposition of the problems faced by workers and bankers, along with the aggregation into the
representative agent framework, is provided in Appendix A.1.
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and we have normalized the supply of labor to be one.11 Household assets include deposits,
Dt, which pay a gross real rate Rd

t , and two types of bank equity: Es
t is equity in a “safe”

bank, which lends predominantly to a safe firm and pays Re,s
t+1 next period; Er

t is equity
in a “risky” bank, which lends predominantly to a risky firm and pays Re,r

t+1. The returns
on equity are of course not known when the household invests. By contrast, the return on
deposits is known, and deposits are protected by deposit insurance; deposits are the safe
asset in our model. Finally, households pay lump sum taxes, Tt, to fund the government’s
deposit insurance program.

The household’s first-order conditions include:

C : (Ct − κCt−1)−ςc − βκEt (Ct+1 − κCt)−ςc − λct = 0, (16)

D : ς0D
−ςd
t − λct + βEt {λct+1}Rd

t = 0, (17)

Es : −λct + βEt {λct+1R
e,s
t+1} + ζs

t = 0, (18)

Er : −λct + βEt {λct+1R
e,r
t+1} + ζr

t = 0, (19)

where λct, ζs
t and ζr

t are the Lagrangian multipliers for the budget constraint and the two
non-negativity constraints. There are also complementary slackness conditions which can be
described by:

ζs
tE

s
t = 0, (20)

ζr
tE

r
t = 0. (21)

If households did not value deposits for their liquidity services (ς0 = 0), Equation (17)
would be the standard RBC Euler condition, and Rd

t would be the standard CAPM rate.
But households do value deposits in our model, and Rd

t is below the CAPM rate. Equity
is not a safe asset and does not provide liquidity services. So, deposits will be the cheaper
source of funding for banks. This fact will play an important role in what follows.

2.3 Banks

Banks are central to our model. First, we set the stage by describing their incentives to
take excessive risk. Then, we discuss the banking sector in some detail.

11While the total supply of labor is fixed, its distribution across safe and risky firms is market determined.
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2.3.1 Incentives to Take Excessive Risk and Capital Requirements

We saw from the section on firms that EtR
r
t+1 < EtR

s
t+1. So, why would a profit-

maximizing bank ever invest in a risky firm? Limited liability and government deposit
insurance are the culprits here. Limited liability shields the bank from downside risk. More-
over, deposit insurance actually subsidizes risk-taking; it makes bank deposits the safe asset,
lowering the cost of issuing deposits, and allowing the bank to expand its portfolio of safe or
risky loans. In what follows, we will see that if the expected return on investment in a safe
firm falls, due say to a negative TFP shock, the bank may be tempted to take a flier on the
risky firm.

As we will see, capital requirements are a potential remedy for excessive risk-taking.
In what follows, we will consider a requirement that says equity finance cannot fall below
a fraction γt of the bank’s loans. A high γt requires the bank and its equity holders to
keep more skin in the game, and it shrinks the bank’s portfolio since equity finance is more
expensive than deposit finance.

2.3.2 The Banking Sector

A measure one continuum of perfectly competitive banks are born each period, and
they live for two periods. In the first period, a bank issues equity, et, and deposits, dt, to
households, and uses the proceeds to make loans, lt, to firms; in the second period, the bank
receives the return on its investments and liquidates its assets and liabilities.

More specifically, in period t, the bank creates a loan portfolio by directing a fraction σt of
its loans to a risky firm; the remainder of its loans go to a safe firm.12 Since Rr

t+1 = Rs
t+1+ εt+1

Qt
,

the ex-post return on the portfolio will be Rs
t+1 + σt

εt+1
Qt

.
The bank’s net worth in period t+ 1 consists of its earnings on the loan portfolio net of

the interest payments on its deposits:

nwt+1 ≡
(
Rs

t+1 + σt
εt+1

Qt

)
lt −Rd

t dt. (22)

If nwt+1 is positive, the bank pays its depositors and distributes the rest to its equity hold-
ers. If it is negative, the bank declares bankruptcy; its depositors are protected by deposit
insurance, but its equity holders get nothing.

The bank’s objective is to maximize the expected return of its equity holders, whose
stochastic discount factor is ψt,t+i. Let ε∗

t+1 be the realization of the idiosyncratic shock
12Our assumption that a bank only deals with one safe and one risky firm comes at no loss of generality

because all the safe firms are identical, and diversification among the risky firms does not take full advantage
of the bank’s limited liability. See Collard et al. (2017) for a more formal exposition of this result.
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below which the bank’s net worth is negative; that is,
(
Rs

t+1 + σt
ε∗

t+1
Qt

)
lt − Rd

t dt = 0. Since
the distributions of aggregate and idiosyncratic shocks are independent of each other, we
can nest expectations with respect to the idiosyncratic shock within the expectation of the
aggregate and idiosyncratic shocks, and the bank’s maximization problem can be written as:

max
lt,dt,et,σt

Et

ψt.t+1


∞̂

ε∗
t+1

nwt+1 dG(εt+1)


− et, (23)

subject to

lt = et + dt,

et ≥ γtlt, (24)

lt ≥ 0,

σ ≤ σt ≤ σ,

where et is equity issued to households. The first constraint is the bank’s balance sheet, and
the second is the bank’s capital requirement. The third constraint rules out short selling; its
role will be discussed in Section 3.3. The fourth imposes limits on the fraction of a bank’s
portfolio that can go to safe or risky loans.13

The bank’s first-order conditions can be found in Appendix A.2.1. In the next section,
we discuss the bank’s basic tradeoff when it decides how risky to make its portfolio of loans.

2.3.3 The Bank’s Dividends and Its Choice of Risk

In Appendix A.2.5, we show that Ω(σt; lt, dt, et) can be expressed as a linear function
of loans, i.e.,

Ω(σt; lt, dt, et) = (Et [ψt,t+1 (ω1 + ω2)] − γt) lt, (25)

where

ω1 ≡
(
Rs

t+1 −Rd
t (1 − γt) − ξσt

Qt

)(
1 −G(ε∗

t+1)
)
, (26)

ω2 ≡
(
σt

Qt

)
τt√
2π

exp
−

(
ε∗

t+1 + ξ

τt

√
2

)2
 , (27)

13These limits on σt are necessary for the numerical methods that follow. In the model calibration, σ is set
equal to 0.99 and σ is set equal to 0.01; so, banks can get very close to totally safe or totally risky portfolios
if they so choose.
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and where 1 −G(ε∗
t+1) is the probability that the bank will not default.

The first component, ω1, is the return on a loan portfolio with a fraction σt going to
a risky firm; −ξ is the (negative) expected value of the idiosyncratic shock. The second
component, ω2, is a bonus attributable to the bank’s limited liability; the higher is the
standard deviation of the idiosyncratic shock, τt, the higher is the upside potential for a
risky loan, while the downside risk is protected by limited liability.

Increasing σt makes the portfolio more risky. More risk decreases the ex-post return on
the bank’s portfolio, but it increases the bonus from limited liability. This is the tradeoff
that a bank faces.

2.4 The Government

The government provides deposit insurance, and collects taxes to pay for it. Given the
Ricardian nature of the model, a lump sum tax, Tt, can balance the budget each period
without distorting private decision making. In Appendix A.4, we show the tax necessary to
support the insurance scheme is

Tt = σt−1Lt−1
Qt−1

τt√
2π

exp
(

−
((Rd

t−1(1−γt−1)−Rs
t)Qt−1+ξσt−1

σt−1
√

2τt

)2)
− (28)

1
2Lt−1

(
Rs

t − σt−1ξ
Qt−1

−Rd
t−1 (1 − γt−1)

) [
1 + erf

((Rd
t−1(1−γt−1)−Rs

t)Qt−1+ξσt−1

σt−1
√

2τt

)]
,

where Lt is the aggregate amount of loans provided by the banking sector. As might be
expected, more risk-taking (a higher σt−1) and/or a higher standard deviation (τt) of the
idiosyncratic shock increases the taxes required to protect deposits.

2.5 Analytical Characterization of the Equilibrium

We are able to derive some analytical results that enhance our understanding of the
model’s equilibrium, and how to calculate it. More generally, we will require numerical
methods.

2.5.1 Two Propositions and a Corollary

As discussed in the section on households, deposits are a cheaper source of bank funding
than equity. So, a bank will fund as much of its loans by issuing deposits as is allowed by
the capital requirements. We formalize this argument and prove the following proposition
in Appendix A.2.2.
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Proposition 1. In equilibrium, capital requirements always bind; that is, et = γtlt.

Based on the next proposition, and its corollary, we need only consider two values of the
bank’s portfolio risk parameter, σt, when we derive the model’s equilibrium. The proposition
is established in Appendix A.2.6.

Proposition 2. The expected dividend function of banks, Ω(σt; lt, dt, et), is convex in σt.
This result holds for arbitrary (and not necessarily continuous) distributions of the idiosyn-
cratic shock.

Corollary. There are no equilibria with σ < σt < σ.
The intuition for this proposition and its corollary is as follows: If σt is high enough, the

bank will be bankrupt for low values of εt anyway, so it might as well take on as much risk
as possible to maximize the portfolio’s upside potential for high values of εt. If σt is low
enough, the bank will not be bankrupt even for low values of εt, and the value of limited
liability is negated; the bank might as well take on the minimum risk to raise the expected
value of its portfolio.

Note also that a risky bank seeks to maximize its exposure to the idiosyncratic shock εt.
Limited liability incentivizes banks to “fail big.” So, a risky bank would not want to diversify
its loan portfolio by lending to more than one risky firm.14 At any one time, depending on
the state of the economy and the realization of aggregate shocks, only one type of bank may
exist, either the risky bank or the safe bank. However, we have not been able to rule out
analytically that risky and safe banks may coexist. Accordingly, we allow for this possibility
in the numerical solution of the model. Nevertheless, in our model simulations, we have not
found any such case.

2.5.2 Equilibrium and Aggregation

We consider a competitive equilibrium in which each bank takes aggregate prices as given.
Appendix B lists all the equilibrium conditions of our model. In this section, we only present
the equilibrium conditions that are not already included in the preceding sections. We let
µt denote the fraction of banks with risky portfolios (banks that choose σt = σ) at date t;
the remaining fraction 1 − µt are safe banks (σt = σ).

14In reality, bank regulators would not allow a bank to lend to a single firm. But our result really says
that risky banks seek exposure to a single idiosyncratic shock εt. To circumvent regulation, for example, a
bank may hold a seemingly diversified portfolio of MBS with all the loans exposed to the risk of a decrease
in house prices. These incentives seem relevant for the literature on securitization surveyed by Gorton and
Metrick (2013).
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The fraction µt is endogenously determined by equity positions of households: we have
µt = Er

t

Er
t +Es

t
. At any point in time, the economy may be in a safe equilibrium (with µt = 0),

a risky equilibrium (with µt = 1), or a mixed equilibrium (with 0 < µt < 1).
Each bank within a group (safe or risky) is alike and solves the same maximization

problem in which it chooses lit, di
t, e

i
t according to its type i ∈ {s, r}. The aggregate loans to

the (representative) safe firm come from two sources: 1) from all safe banks (of measure 1−µt)
that allocate 1 − σ share of their loan portfolio to safe projects and 2) from all risky banks
(of measure µt) that allocate 1 − σ share of their loan portfolio to safe projects. Therefore,
the equilibrium conditions linking our bank-level and firm-level variables representing loans
are

QtK
s
t+1 = (1 − σ) (1 − µt) lst + (1 − σ)µtl

r
t . (29)

Similarly,
QtK

r
t+1 = σ (1 − µt) lst + σµtl

r
t . (30)

The aggregate bank loans are linked to the individual bank loans by: Lr
t = µtl

r
t and Ls

t =
(1 − µt)lst . Therefore, we can describe the latter two equations by using aggregate loans

QtK
s
t+1 = (1 − σ)Ls

t + (1 − σ)Lr
t , (31)

QtK
r
t+1 = σLs

t + σLr
t . (32)

The equity positions taken by households, in turn, determine the equity positions of
individual banks: Er

t = µte
r
t and Es

t = (1 − µt)es
t . The returns on the equity positions taken

by households at date t are linked to the dividends paid by banks at date t+ 1. We have:

Er
tR

e,r
t+1 = (ωr

1 + ωr
2)Lr

t , (33)

Es
tR

e,s
t+1 = (ωs

1 + ωs
2)Ls

t , (34)

where we use the fact that max
[
nwr

t+1, 0
]

is linear in loans; ω1 and ω2 were defined in
equations (26) and (27). Deposits held by households are issued by (safe and risky) banks:
Dt = Ds

t +Dr
t where Ds

t = Ls
t − Es

t and Dr
t = Lr

t − Er
t .

The equilibrium conditions linking our aggregate and individual firm-specific variables are
straightforward, but cumbersome in terms of notation. We state the conditions in Appendix
B. The market-clearing conditions for labor, capital, and goods are

Hs
t +Hr

t = 1, (35)

Ks
t +Kr

t = Kt, (36)
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and
Y s

t + Y r
t = Ct + Ig

t . (37)

3 Simulated Method of Moments, Calibration, and Model
Solution

We choose the model parameters with a mix of estimation and calibration. We use the
simulated method of moments (SMM) for parameters specific to our model. We pin down
some other parameters to hit steady-state targets based on long-run averages. And finally,
we calibrate a few parameters based on choices that are common in the literature.

We use the simulated method of moments (SMM) to size the shock processes for total
factor productivity, At, investment-specific technology, ηt, and for shocks to the volatility of
idiosyncratic technology for risky projects, τt. We allow each shock to follow an autoregressive
process of order 1. We want to size the persistence parameters and the standard deviations
of the innovations. We also want to size the investment adjustment cost parameter, ϕ; the
habits parameter, κ; capital requirements, γ, modeled as a static buffer; the average standard
deviation of the risky firm’s idiosyncratic technology shock, τ ; and the average penalty for
financing risky projects, ξ.

Turning to the implementation of the SMM estimation, the quadratic objective function
for the SMM estimation includes the variances, correlations, and autocorrelations for real
GDP, real investment, and the relative price of investment.15 These moments are computed
after bandpass-filtering the observed and simulated data (selecting standard business cycle
frequencies). The moments are weighted using the SMM optimal weighting matrix with
model counterparts computed from a simulated sample spanning 5000 observations. Our
data sample runs from the first quarter of 1980 to the fourth quarter of 2024.

The SMM objective function includes two additional quadratic terms that allow us to
capture realistic bank failure rates and related declines in economic activity. The first term
captures the distance between the average bank failure rate over the observed sample—
measured as the assets of failed banks relative to total banking-sector assets and amounting
to 1.52 percent on an annualized basis.16 The second term captures the distance in the

15The macroeconomic indicators in our sample are from the National Income and Products Account of
the U.S. Bureau of Economic Analysis. We use chain-type indexes. The relative price of investment is the
ratio of the price index for gross private domestic investment to the price index for personal consumption
expenditures excluding food and energy.

16Assets for failed banks are from the FDIC’s Bank Failure and Assistance Data. The total assets of the
U.S. banking sector are from the Federal Reserve’s H.8 Release, Assets and Liabilities of Commercial Banks
in the United States.
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average decline in economic activity in periods of elevated bank failures in the observed
and simulated data. In the observed data, we consider a threshold for failure rates of 1
percent. Selecting only quarters in which the bank failure rate exceeded this threshold in
the estimation period, we compute an average real GDP gap (again, using a bandpass filter
and selecting standard business cycle frequencies) of -0.33 percent. The weights on these
two quadratic terms in the SMM objective function are chosen to be large enough to ensure
that the model will match exactly the observed data moments that enter these terms.17

We calibrate some parameters to hit steady state targets consistent with averages of
observations for key variables over the same estimation sample period as for the SMM pro-
cedure. We size γ at 0.078, a value chosen to match the average ratio of equity to assets in
the U.S. banking system over the sample period of 7.8 percent.18 Over this period, capital
requirements did not vary systematically with changes in macroeconomic indicators. We
capture this feature of capital regulation by simulating data using a simple static buffer for
capital requirements. Although all SMM parameters are chosen jointly, effectively, one could
interpret the SMM procedure as identifying a buffer above the optimal steady-state capital
requirement that is consistent with the observed average bank failure rate given all other
parameters.

We set the discount rate, β, at 0.9968, a value consistent with an annualized real risk-free
rate of 1.28 percent. This value matches the average interest rate on a 3-month Treasury
bill minus the inflation rate over the estimation period.19

Finally, the parameter ς0 enters the household’s utility of deposits and influences the
tradeoff faced by a planner between the utility of deposits and the disutility of excessive
risk-taking. The parameter ς0 measures the importance of the utility of deposits relative to
the utility of consumption. We choose the value of ς0 of 0.0298, which allows us to match
the average spread between the interest rate on a 3-month Treasury bill and the interest rate
on deposits rates. For the same period as for the SMM estimation sample, we calculate this
average spread to be 0.55% (annualized).20

Before discussing the parameters estimated through the SMM procedure, we need to
17For the SMM objective function, we scale the quadratic terms for the average bank failure rate and the

average GDP gap over periods of elevated bank default rates by sum of the weights of all the other terms
entering the objective function.

18Equity and asset positions for the U.S. banking sector are from the Federal Reserve’s H.8 Release.
19Interest rate data are for the 3-month Treasury bill on a discount basis from the secondary market as

reported in the Federal Reserve Board’s H.15 Release. The inflation data are the quarterly log change in the
chain-type price index for personal consumption expenditures excluding food and energy from NIPA Table
2.3.4 of the U.S. Bureau of Economic Analysis.

20The 3-month Treasury bill is, again, from the Federal Reserve Board’s H.15 Release. The deposit rate
is computed as the deposit expense divided by deposits (for domestic and foreign offices) using Call Report
data for all FDIC insured banks.
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briefly cover how we pinned down the rest of the parameters. Our calibrated parameters
are reported at the top of Table 1. These are parameters for which previous papers offer
guidance: the capital share α = 0.3, the depreciation rate δ = 0.025, the intertemporal
elasticity of substitution ϱc, and the interest rate elasticity of supply for deposits, ςd, both
set to 1.1 to approximate the log case.

3.1 Simulated Method of Moments, Results

There are no surprises for the parameters from the SMM procedure. They are reported
in the bottom part of Table 1. As commonly found in the literature, for instance, the
standard deviation of TFP shock is close to 1 percent, and its autoregressive coefficient, at
0.96 indicates a high degree of persistence. There is a high degree of consumption habits,
with the parameter κ pinned down at 0.76, whereas we estimate relatively modest investment
adjustment costs, with the parameter ϕ at 0.17.

As shown in Table 2, these parameter choices allow the targeted model moments to
match closely their counterpart data moments. The model moments reported in the table
are computed from a simulated sample of 5000 observations (consistent with the SMM pro-
cedure). For each targeted moment, the table also shows the 5th and 95th percentiles from
1000 simulated samples of the same length as the observed data. All but one of the data
moments fall between the 5th and 95th percentiles of the simulated moments—the exception
is the variance of the price of investment, for which the data moment falls just a bit shy of
the 5th percentile.

Armed with the sizes of the shock processes, we can show their relative importance in
accounting for the variation of the economic indicators targeted in the SMM procedure and
other key variables. As Table 3 shows, the TFP shock is the key driver of the variation
in GDP, and investment, whereas the ISP shock accounts for a large share of the variation
in the price of investment. As we will show in Section 5.3, the volatility shock plays an
important role in plunging the economy into episodes of excessive risk-taking, and optimal
capital requirements are therefore quite sensitive to this shock. However, as these episodes of
excessive risk-taking are relatively infrequent, the average impact of this shock on aggregate
macro variables remains relatively modest, including the impact on the credit-to-GDP ratio.
These considerations already point to the possibility that aggregate indicators could provide
little information that is relevant for setting capital requirements.
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3.2 Untargeted Moments

Given our interest in assessing simple rules for capital requirements that respond to the
ratio of credit to GDP, we find it important to assess how well the model can capture key
data relationships that underpin the recommendation to consider this type of rule in the
Basel III Accords. As shown in Figure 1, there is a predictive relationship between the ratio
of non-financial credit to GDP and real GDP two years ahead using data for the United
States.21 The circles in the figure denote observations from the first quarter of 1980 through
the fourth quarter of 2024—the same period as for our calibration sample—and point to a
tenuous negative correlation, about −0.1. The regression line in the figure confirms that
periods in which the credit-to-GDP ratio is above trend systematically presage periods in
which GDP will be below trend two years in the future.22

To assess whether or not our model is consistent with the negative correlation from U.S.
data, we draw from the model 1,000 simulated samples of the same length as the observed
data. For each sample, we recompute the regression line shown in Figure 1 and the correlation
between the detrended ratio of credit to GDP and GDP two years ahead, which allows us
to size a 90 percent confidence interval.23 Both are included in their respective confidence
intervals. Specifically, the interval for the correlation runs approximately from −0.20 to 0.17,
thus squarely including the −0.08 correlation based on observed data. We conclude that,
even though this is not a moment directly targeted in our calibration based on the simulated
method of moments, the model is consistent with the mild predictive relationship between
credit and GDP that can be evinced from U.S. data.24

In our model, excessive risk-taking leads to negative equity and defaults. Even if the
ratio of negative equity to assets at default is not a targeted moment, we can check whether
it is consistent with its data counterpart. Using the list of failed FDIC insured banks
available from the FDIC, we can compute the equity-to-asset ratio for failed banks within
our estimation sample based on the last Call Report filed. We consider a weighted average
of this ratio across time.25 The match between data and model is remarkably good as in

21To construct the credit-to-GDP ratio, the credit measure is for private non-financial credit, sourced
from the Bank for International Settlements; for GDP we use the nominal volume from National Income and
Product Accounts of the U.S. Bureau of Economic Analysis.

22We detrended the credit-to-GDP ratio with a Hodrick-Prescott filter using a coefficient of 400,000,
implying a trend that is almost linear in line with the prescriptions of the Basel III guidance. This trend is
consistent with the recommendations in Borio and Lowe (2002) and Basel III guidance, Basel Committee on
Banking Supervision (2010).

23We take Ls
t + Lr

t from our model as the measure of credit, and Y s
t + Y r

t as the measure of GDP.
24Regression results analogous to the ones presented here obtain for various sensitivity exercises, including:

a longer sample starting in 1947, using detrended non-financial business credit without dividing it by GDP,
and lengthening or shortening the lead length for detrended real GDP.

25We deflate nominal assets of failed banks using the consumer price index excluding food and energy. We
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both cases the average equity at default is -1.9 percent of assets.26

Finally, we consider whether the model predictions on the frequency of periods with
elevated failure rates, which we dub “crisis periods” is in line with the observed data. Figure
2 plots the U.S. failure rate weighted by bank assets. We use these data series to find the
average failure rate targeted in our SMM exercise. As the figure illustrates, periods with
de minimis failure rates are punctuated by periods with elevated failure rates. Using a 1
percent threshold to separate out periods with elevated failure rates—the same threshold as
for the conditional output gap in the SMM objective function—the frequency of quarters in
which the failure rate is elevated is 7.2 percent. On the model side, the 90-percent confidence
interval for periods with excessive risk-taking runs from 2.8 to 14.5 percent, with the average
at 8.1 percent. We conclude that the model is a remarkably good match to the data in this
dimension despite not being directly targeted in the calibration.

3.3 Model Solution

Occasionally binding non-negativity constraints on bank loans complicate the solution
of our model. In our SMM exercise, we need to account for shifts into periods of excessive
risk-taking—regime shifts that are jointly determined by the state variables of the model
and the realization of exogenous shocks. To address these complications, we rely on the
OccBin toolkit developed by Guerrieri and Iacoviello (2015); they also provide an extensive
discussion of the accuracy of their solution. In brief, the algorithm reduces the solution of
models with occasionally binding constraints to a sequence of indicators denoting whether
these constraints are binding or not. Starting from initial conditions and a path for the
exogenous shocks, this sequence of indicators is solved for with the same approach as the
shooting algorithm of Fair and Taylor (1983). This algorithm can be applied to models with
a large number of state variables such as ours.

The Lagrange multipliers χi
2t on the loan constraints lit > 0, where i ∈ {s, r}, govern the

transition between different regimes, demarcated as follows:

1. Safe regime: χs
2t = 0, lst > 0, χr

2t > 0, and lrt = 0,

2. Risky regime: χs
2t > 0, lst = 0, χr

2t = 0, and lrt > 0,

3. Mixed regime: χs
2t = 0, lst > 0, χr

2t = 0, and lrt > 0.

construct weights by taking the ratio of deflated nominal assets for each banks to the sum of deflated assets
for all failed banks.

26Bennett and Unal (2015) and Elenev et al. (2021) also discuss the ratio of equity to assets for failed
banks.
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So, why did we complicate matters by imposing non-negativity constraints on loans? We
needed to rule out the short selling of assets (or negative loans). To see why, suppose banks
are in the safe regime; in this case, risky loans are overpriced compared to safe loans (because
expected returns on risky loans are relatively lower in the safe regime); absent short-selling
restrictions, each bank would want to short risky loans. Similar reasoning applies to the
risky regime, in which the banks in our model would short safe loans. The last possible
scenario is when safe and risky loans are equally priced, so the expected returns on safe and
risky loans are the same, resulting in a mixed regime in which 0 < µt < 1 (as described in
Section 2.5.2).

3.3.1 What Triggers a Shift to the Risky Regime?

The answer to this question is rather complex because the banker’s maximization problem
has so many moving parts. We give a detailed answer in Appendix C; here we offer a simpler
explanation that focuses on the main forces at work.

Consider the expected dividends for safe and risky firms, Ωs
t ≡ Ω(σ; lt, dt, et) and Ωr

t ≡
Ω(σ; lt, dt, et) respectively. Anything that would make Ωr

t − Ωs
t go positive will trigger a

risk-taking episode. Equation (25) specifies Ω(σt; lt, dt, et) for all values of σt, where it will
be recalled that

ε∗
t+1 = −Qt

σt

[
Rs

t+1 −Rd
t (1 − γt)

]
(38)

is the realization of a bank’s idiosyncratic shock below which its net worth is negative, and
G(ε∗

t+1) is the probability that the bank will fail. Implicit in the formulation of the banker’s
problem, (23), is the fact that G ′(ε∗

t+1) > 0 and G(ε∗
t+1) → 0 as ε∗

t+1 → −∞.
For purely expositional purposes, we will suppose that σ = 0 and σ = 1 in this section.

With these simplifications, (25) implies

Ωs
t = Et

[
ψt,t+1

(
Rs

t+1 −Rd
t (1 − γt)

)]
lst − γtl

s
t and (39)

Ωr
t = Et

[
ψt,t+1

((
Rs

t+1 −Rd
t (1 − γt) − ξ

Qt

)(
1 −G(ε∗

t+1)
)

+

τt

Qt

√
2π

exp
−

(
ε∗

t+1 + ξ

τt

√
2

)2
 lrt − γtl

r
t ,

(40)

where it will be recalled that

Rs
t+1 = α

At+1

Qt

(
Hs

t+1
Ks

t+1

)1−α

+ (1 − δ)Qt+1

Qt

 . (41)
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What might turn Ωr
t −Ωs

t positive, triggering a risk-taking episode? The obvious culprit is
the interest rate spread Rs

t+1−Rd
t (1 − γt) . An expected narrowing of this spread will decrease

Ωs
t more than Ωr

t since 1 − G(ε∗
t+1) is less than one in the risk-taking regime. Moreover, a

narrowing of the spread has a secondary effect on Ωr
t that is a little more subtle: (38) implies

that ε∗
t+1 will rise. The presence of ε∗

t+1 (instead of −∞) in the bank’s expected dividends,
(23), represents the value of limited liability to banks. Idiosyncratic shocks below this cut-off
point cannot lower the bank’s expected (discounted) net worth. An increase in ε∗

t+1 would
enhance the value of the shield of limited liability and increase Ωr

t .27 Note finally that if a
risk-taking episode is triggered, there will be a jump in σ, and therefore a further jump in
ε∗

t+1.
So, what might narrow the interest rate spread and provoke a risk-taking episode? There

are a number of possibilities. Perhaps the most obvious would be a fall in the expected return
on safe assets; for example, an expected fall in TFP could trigger a risk-taking episode.
Two parameters in (40) are also of interest. An increase in the standard deviation of the
idiosyncratic shock, τt, will raise Ωr

t since it increases the upside potential of the risky
asset (while the downside potential is unchanged because of limited liability). The second
parameter is the expected value of the risky firm’s idiosyncratic shock, −ξ; ξ is the average
penalty for investing in the risky asset. A fall in this parameter would also raise Ωr

t .

Note also that a loosening of the capital requirement, γt, would decrease the interest rate
spread and could trigger a risk-taking episode. A loosening of the capital requirement allows
the bank to fund more of its loans with deposits; this reduces the cost of banking and allows
the bank to keep less skin in the game. The bank expands its lending and switches to risky
loans. And note finally that a dynamic capital requirement could hold Ωr

t − Ωs
t constant at

its steady-state value; banks would never leave the safe equilibrium.
The intuitive exposition just given relied upon two simplifying assumptions—one made

explicit, and the other implicit—that must now be undone. The explicit assumption was
that σ = 0 and σ = 1. In the numerical analysis that follows, σ is set equal to 0.01 and σ

is set equal to 0.99; in equilibrium, there must be both safe and risky loans (and firms) so
that we can track safe and risky capital across regimes. The implicit assumption was that a
bank could observe both Ωr

t and Ωs
t , and then choose its loan portfolio accordingly. But, we

cannot have both Ωr
t and Ωs

t in equilibrium. If we are not in a risk-taking episode, we have
Ωs

t , and Ωr
t is an off-equilibrium object; during a risk-taking episode, we have Ωr

t , and Ωs
t is

an off-equilibrium object.
However, there is an equilibrium spread in asset returns—whose evolution is closely

27It is hard to see these results in (40) without investigating a number of special cases, some involving the
absolute value of ε∗

t+1 + ξ. These special cases are relegated to Appendix C.
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related to Ωr
t − Ωs

t—that we can track:

St ≡ Et [Re,r
t+1 −Re,s

t+1] . (42)

St is the expected spread between the returns on risky and safe equity. Because of our
minimum scale assumptions, a small amount of risky loans will be extended in the safe
regime, and conversely, a small amount of safe loans will be extended in the risky regime;
so, the returns on equity are equilibrium objects. In a risk-taking episode, St turns positive.
Once the episode is over, the spread turns negative.28

4 Dynamic Capital Requirements

Before discussing dynamic capital requirements, we build some intuition for how changes
in capital requirements affect our model economy. The next two sections show that suffi-
ciently large increases and decreases in capital requirements have asymmetric effects on the
decisions of banks, economic outcomes, and welfare. In the subsequent sections, we intro-
duce our no-failure capital policy and discuss its global optimality for a static version of our
model.

4.1 An Increase in Capital Requirements

Figure 3 shows the effects of a one percentage point increase in the capital requirement,
γt; this increase is implemented through a shock that follows an autoregressive process of
order 1 with a persistence parameter of 0.9. The increase forces banks to shift the funding
mix from deposits to equity; this shift increases the cost of funding a given amount of loans
since deposits will be held by the households at a lower rate of return because of their
liquidity value.

Note that the Modigliani-Miller Theorem does not hold in our model since, once again,
deposits are valued for their transaction services. So, even though the economy stays in a

28There is a simple relationship between St and Ωr
t − Ωs

t when computing Ωr
t and Ωs

t conditional on,
respectively, the risky and safe loans actually extended (rather than the desired amount of loans). In that
case, St ≡ Et

[
Re,r

t+1 −Re,s
t+1
]

= Ωr
t

Er
t

− Ωs
t

Es
t
. The thought experiment by which a banker compares the expected

dividends for a desired level of loans is intuitive, but we solve the model by referring to the Lagrange
multipliers on the non-negativity constraints for safe and risky loans. When extending safe loans leads to
higher expected dividends, a banker would want to short-sell risky loans, turning the corresponding Lagrange
multiplier positive; analogously, when extending risky loans leads to higher expected dividends, a banker
would want to short-sell safe loans. These two conditions allow us to determine which regime applies in any
period more easily than attempting to construct Et
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, whose computation requires taking a

stand on the entire path of future actions.
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safe equilibrium, tighter capital requirements can have real effects on the macroeconomy.
More precisely, an increase in the capital requirement acts like a tax hike on banks.

Households, who own the banks, are effectively poorer. They cut back on consumption, and
since labor is inelastically supplied, their savings increase correspondingly. But under our
calibration, the movements in consumption, investment, and output are tiny, as can be seen
in Figure 3. The real side of the economy is hardly affected.

By contrast, the effects in the financial sector are sizable and can affect household utility.
First and foremost, the increase in equity funding reduces the bank’s demand for deposits,
and the deposit rate falls. Moreover, the increase in household savings pushes up the supply
of deposits, which reinforces the decrease in the deposit rate. Deposits make up roughly 90
percent of bank funding in our calibration. Somewhat surprisingly, the increase in capital
requirements and the subsequent fall in the deposit rate end up reducing the cost of bank-
ing.29 However, the large drop in deposits, coupled with the (almost imperceptible) fall in
consumption, decreases household utility, as can be seen in the last panel in Figure 3.30

Over time, these movements reverse themselves. The capital requirement falls, and de-
posits recover. The capital stock falls, increasing the marginal product of capital and Rs,
which pushes Ωs up relative to Ωr. The economy reverts to its steady state.

4.2 A Decrease in Capital Requirements

The dashed lines in Figure 4 show responses to a shock that lowers γ by one percentage
point. The shock is equal in magnitude but opposite in sign relative to the one considered in
the previous section—the effects of that shock are shown again by the solid lines to emphasize
the asymmetry.

In response to the decline in capital requirements, deposits rise and bank equity falls.
The steady state capital requirement, as described in Section 3, is set to 7.8 percent. The
minimum capital requirement consistent with a safe regime varies with aggregate shocks, but
in the steady state it takes a value of 7.21 percent—in other words, the model calibration
implies a modest steady-state buffer sized at 0.59 percentage points. A one percentage-point
shock more than depletes this buffer and plunges the economy into the risky regime.

On average, risky firms produce less output since a risky firm’s idiosyncratic shock has
a negative expected value; so, output and income fall substantially.31 Consumption and

29Begenau (2020) also finds that an increase in capital requirements can reduce the cost of bank funding
and increase lending.

30Welfare is calculated as the present discounted value of utility at a given point in time; it moves as the
state variables change.

31Put another way, some of the risky loans fail, destroying bank equity and increasing the taxes necessary
to insure deposits. So, output and income fall.
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investment also fall. Because of the discontinuous hit to the economy’s productive capacity,
welfare takes a sizable hit.

To sum up, positive and negative shocks to the capital requirement have asymmetric
effects on the economy, and they are not the mirror images found in linear models. For
a tightening of capital requirements, what happens in the financial sector mostly stays in
the financial sector, but welfare still falls from a reduction in deposit balances. By contrast,
loosening capital requirements may trigger an excessive risk-taking episode with a more than
proportionate fall in output, consumption, and welfare.

4.3 A Candidate Optimal Policy

In line with the discussion in the preceding section, our candidate optimal policy sets
capital requirements {γ∗

t }∞
t=0 at the lowest level necessary to prevent falling into the risk-

taking regime—given realizations of the shocks—at any date t. We dub this policy “no-failure
capital requirements.”

As illustrated in Section 4.1, a higher capital requirement in period tk would lead to
welfare losses from the reduced amount of liquidity services without altering risk-taking
incentives. The decrease in the capital requirement involves an output loss of about ξK
from making risky loans, but it may increase the liquidity services that enter into household
utility. The trade-off between these two considerations determines the impact on welfare. For
a small decrease in capital requirements, the former consideration is more important. Why?
Since banks jump to the risky equilibrium, the marginally lower capital requirement entails
a discrete, disproportionate drop in welfare stemming from the discrete drop in output, as
illustrated in Section 4.2. By contrast, the welfare change associated with increased liquidity
provision by banks stemming from marginally lower capital requirements is proportional to
the change in capital requirements.

Our reasoning above establishes that the no-failure policy is locally optimal. We offer
two checks beyond local optimality. In the next section, we show that this policy is globally
optimal in a static setting. Furthermore, in a dynamic setting, we can compare the perfor-
mance of our candidate optimal rule against different classes of rules. Our tests fail to reject
global optimality within the class of linear policy rules, as we discuss in Section 6.2.

4.4 The Optimal Steady-State Capital Requirement

We can investigate the optimality of our candidate policy in the steady state by direct
evaluation of a grid of values for the capital requirement. The results are shown in Figure 5.

The vertical dashed line in each panel demarcates the border between the risky regime,
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on the left of the line, and the safe regime, on the right. Starting with the safe regime, the
top panel of the figure shows that welfare peaks at a capital requirement just large enough
to prevent the economy from falling into the risky regime. By inspection, this finding makes
our candidate policy globally optimal in this static setting. For higher values of the capital
requirement, deposits drop as banks need to shift the financing mix away from deposits.
Consumption moves down progressively but imperceptibly, as does the capital stock of firms
(equivalent to outstanding credit in our model). The drop in consumption and deposits is
monotonic for values of the capital requirement to the right of the regime shift. Accordingly,
the drop in welfare is also monotonic in that region.

For values of the capital requirement that let the risky regime prevail, the interactions
among multiple forces are more complex. Starting from the lowest capital requirements
shown in the figure, marginal increases in this requirement continue to reduce deposits and
their liquidity value monotonically; by raising the cost of credit, increases in capital re-
quirements buffet the equilibrium level of physical capital monotonically. But the effect of
declines in physical capital on consumption is not monotonic. At first, consumption rises
as a lower stock of physical capital reduces the amount of investment needed to replenish
depreciated capital. But as capital requirements surpass roughly 6.2 percent, consumption
starts dropping. At that point, as physical capital becomes scarcer, further reductions buffet
output more and more, and from there, consumption. In other words, with a positive second
derivative of capital in the production function, reductions in capital eventually lead to such
large cuts in production and consumption that this effect prevails over offsetting effects on
consumption from reductions in investment.

The considerations for welfare reflect the interplay of the utility value of both consump-
tion and deposits. For capital requirements between roughly 5.2 and 6.2 percent, marginal
increases in the capital requirement reduce the utility value of deposits more than they in-
crease the utility value of consumption. Accordingly, welfare has a local peak at about 5.2
percent.

5 Illustrating the Reaction of Optimal Dynamic Cap-
ital Requirements to Aggregate Economic Shocks

In this section, we show how our candidate optimal rule for capital requirements, γt, reacts
to three shocks that have different cyclical implications for GDP and credit. Specifically, we
show that optimal capital requirements can increase in a recession or a boom, or may adjust
to prevent a banking crisis in response to shocks that leave little imprint on GDP. We also
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show that, depending on the source of shocks, our candidate optimal rule implies different
patterns of correlation with the credit-to-GDP ratio.

5.1 A Contractionary TFP Shock

TFP shocks have played a major role in RBC modeling. Figure 6 illustrates the effects of
a negative one-standard-deviation TFP shock. We consider three alternative rules for capital
requirements. In each panel, the solid lines show responses under our candidate optimal rule
for capital requirements. The dashed lines show responses under the estimated static buffer.
And the dot-dashed lines show responses under a rule that suppresses the static buffer and
simply keeps capital requirements constant at the lowest level that would prevent falling into
the risky regime in the steady state. This rule is optimal at the steady state but performs
poorly in the face of shocks. We use it to illustrate the perils of a suboptimal policy that
does not prevent a switch to the risky regime.

We begin with the case of fixed capital requirements with no buffer. Since the shock
is auto-correlated, today’s TFP shock lowers the expected marginal productivity of capital
for the next period, and thus the expected return on safe assets. As explained in Section
3.3.1, as risky projects become relatively more attractive, the equilibrium switches to a risky
regime. The term Re,s

t+1 falls, and the spread between risky and safe projects turns positive.
Risky firms produce less output on average, leading to bank failures; so, output and income
fall substantially, as does consumption.

Over time, the TFP shock dissipates and the process described above reverses itself. The
falling capital stock raises the marginal productivity of capital, the return on safe assets,
and the price of investment. St falls, and jumps negative after σt drops to its lower bound,
and the economy jumps back to a safe equilibrium. The credit-to-GDP ratio rises and then,
midway, starts to fall.

Next, we turn to our no-failure rule for capital requirements. In this case, the responses
are denoted by the solid lines in Figure 6. The rule sets capital requirements just tight
enough to keep safe loans attractive; as we have seen, any higher would unnecessarily deprive
households of the deposits that they value. γt jumps on impact and falls back to its steady-
state value as the TFP shock dissipates. Notice that the change in capital requirements is
very small, just a fraction of a basis point.

While the planner’s policy avoids risk-taking episodes, it cannot undo the damage done
by the negative TFP shock itself. The shock lowers the household’s net worth, and the
household responds by decreasing consumption, as familiar from the RBC literature.

For use in Section 6, we also track the credit-to-GDP ratio. It rises and falls, as under our
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calibration, bank loans decrease more quickly than GDP. To set the stage for the analysis
of simple rules, including the Basel III CCyB prescriptions, this is a shock for which the
response of the credit-to-GDP ratio tracks the optimal response of capital fairly closely, but
they are just on very different orders of magnitude.

Finally, notice that the responses under the calibrated static buffer for bank capital are
indistinguishable from the response under the optimal rule. The only daylight appears for
the expected spread between the returns from risky and safe projects. The optimal policy
keeps those returns aligned, whereas the calibrated buffer forces more skin in the game than
necessary, opening up a spread, as shown in panel 5.

Takeaways: The no-failure policy avoids a banking crisis in the face of an economic con-
traction caused by a negative TFP shock with an increase in capital requirements. Following
a TFP shock, the responses of optimal capital and of the credit-to-GDP ratio are several
orders of magnitude apart.

5.2 An Expansionary Investment Technology Shock

Here we study a positive ηt shock in the equation for net investment, (11). The innovation
to the shock process is sized at one standard deviation based on the estimate from Section
3. Figure 7 illustrates the effects of this shock. Once again, the dashed-dotted lines show
responses under a policy that keeps capital requirement unchanged from the lowest level that
would prevent excessive risk-taking in the steady state—labeled no capital buffer.

This shock was not considered in Section 3.3.1, but its effects are readily translatable to
the discussion there. A positive shock to investment in period t increases the supply of capital
next period, Kt+1, lowering the expected marginal product of capital and the expected return
on the safe asset. The expected return on safe equity falls, the spread between risky and
safe returns turns positive, and an associated banking crisis begins, even though the shock
itself is expansionary.

Note that the expected return on safe equity is short lived. To see why, note that the
decrease in the marginal product of capital causes the price of capital, Qt+1, to fall, raising
the return on safe loans in period t + 2. However, the damage is already done; the risk-
taking episode has already been triggered, as documented by the jump in St. The risky
firms produce less output on average, and output and consumption fall. From here on, the
story is much the same as before. The investment shock decays over time and the process
gradually reverses itself. Note that there is an upward spike in the expected return on safe
loans when the economy jumps back to a safe equilibrium.

The solid lines illustrate what would happen under our candidate optimal policy for γt.
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The planner raises the capital requirement just enough to offset the switch to excessive risk-
taking. Consumption and investment rise more in this case since there are no bankruptcies
and equity losses to lower household income. Once again, there is little daylight between
the responses under the optimal policy and the responses under the calibrated static buffer,
shown by the dashed lines.

In response to this shock, the credit-to-GDP ratio may not move monotonically. Un-
der our no-failure policy, it drops on impact, then it rises above its steady state, before
falling again. By contrast, under the same policy, capital requirements rise and then fall
monotonically.

Takeaways: The no-failure policy avoids a banking crisis in the face of an economic
boom caused by an investment technology shock with an increase in capital requirements.
Under this rule, there is no time-invariant contemporaneous correlation between capital
requirements and the credit-to-GDP ratio; the correlation pattern also varies depending on
which shock or combination of shocks is affecting the economy.

5.3 A Shock that Increases the Volatility of Risky Returns

As discussed in Section 3, τ , the mean standard deviation of the idiosyncratic shock
affecting risky firms is 4.6%. Our volatility shock increases the standard deviation by 17
basis points, after which it follows the estimated autoregressive process of order 1. As
explained in Section 3.3.1, an increase in volatility raises the expected return on risky loans,
since it enhances the upside potential of risky loans while the downside risk is protected by
limited liability.

Figure 8 illustrates the economic consequences of this volatility shock. As before, the
dashed lines show what would happen if γt were to be held constant with no buffer. The shock
entices banks to switch to risky loans, some of which will fail, increasing taxes and destroying
bank equity. The story that follows is by now familiar. Consumption and investment fall.
Eventually, the shock dissipates and the falling capital stock raises Rs enough to make safe
loans attractive again.

As the solid lines illustrate, our no-failure policy raises capital requirements just enough
to eliminate the excessive risk-taking. Under this policy, there is no change in the expected
return on safe equity or on St, and the shock has no discernible effect outside financial
markets. Once again, as shown by the dashed lines, the responses under the calibrated
buffer hug the responses under the optimal policy.

Finally, returning to the response of the credit-to-GDP ratio, the optimal Ramsey policy
for capital requirements leaves it essentially unchanged in response to the volatility increase.
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Takeaways: The no-failure policy can neutralize the effects of shocks that affect the desir-
ability of risky projects by raising capital requirements leaving little to no imprint on GDP
and the credit-to-GDP ratio. This is further evidence that the correlation pattern between
optimal capital requirements and the credit-to-GDP ratio is influenced by the underlying
shocks.

6 Simple and Implementable Rules for Capital Require-
ments

Section 5 discussed the effects of some key sources of shocks in isolation. In practice, poli-
cymakers face a much more difficult challenge: as the economy faces a multiplicity of shocks,
all occurring at the same time, policymakers have to consider the full stochastic structure of
the economy. In our model, we can deploy our no-failure policy when the economy is hit by a
full constellation of shocks, but it is implausible to think that policymakers would be able to
implement it. So, in this section, we consider policy rules in which the capital requirement
responds to key indicators of the state of the business or credit cycles without conditioning
on precise knowledge of each shock at all points in time.

We focus here on simple rules that respond to only one variable, but we also allow the
rules to retain a static buffer over the amount of bank capital necessary to avoid switching
into the risky regime in the steady state. The Basel III cyclical buffer, which emphasizes the
credit-to-GDP ratio, will be of particular interest. We will optimize the coefficients of the
rules to maximize welfare. In practice, once optimized, the dependence on cyclical indicators
is all but shut off, so that the simple rules are hard to distinguish from a simple static buffer.

6.1 Evaluating Simple Rules

We start this exploration by focusing on the Basel rule and showing that it does little
to improve economic outcomes. The Basel III prescription is to tighten or relax capital
requirements in line with changes in the credit-to-GDP ratio.32

As shown in Table 4, the optimized coefficient on the credit-to-GDP ratio is small in
magnitude, a mere 0.000035, limiting the variation in the capital requirement. The standard
deviation of γt under this rule is below one basis point, well below the variation under the

32The Basel III guidance on the CCyB recommends detrending the credit-to-GDP ratio with a Hodrick-
Prescott filter with a parameter set to 400,000, implying a trend very close to linear. Since our model is
stationary, there is little difference between the ratio in deviations from its steady state and this gap. For
simplicity, we focus on a rule in terms of the former, where the ratio itself is defined as Ls

t +Lr
t

4(Y s
t +Y r

t ) . The
annualization of the quarterly GDP flow follows standard practice.
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best performing no-failure rule, as can be seen from the last row of the table. The average
failure rate is only slightly higher than for the optimized buffer (shown in a lower row of the
table), but this is only because, essentially, the optmimization of the coefficients makes the
rule indistinguishable from an optimized static buffer. As a result, the loss relative to a fully
optimal rule remains very small, about 2 basis points of permanent consumption.33

We emphasize that the welfare costs of this simple rule is so small merely because the
optimization of the rule’s coefficients eliminated any meaningful cyclical variation. The table
stops short of showing that it is also possible to do more harm than good with a simple rule.
For instance, consider an alternative rule that raises the capital requirement 1 percentage
point for each percentage point increase in the credit-to-GDP ratio above its steady state
level (i.e., the slope coefficient is 1). Under such a constrained rule, the optimal buffer would
rise from about 0.85 percent to 6.85 percent. Correspondingly, the welfare loss would rise
from about 2 basis points to nearly 1 percent of consumption, a large welfare loss by the
standard of macro models. And of course, the welfare loss would be even larger without re-
optimizing the buffer, but the model becomes so unstable that we have trouble quantifying
it.

Much the same reasoning applies when considering rules optimized to respond to GDP,
or to the expecting banking spread, equivalent to a net interest margin in our model. In
fact, even when considering optimized rules depending on any other state variable from
the model, we did not have much better luck. Apart from rules that respond to only one
indicator, we considered rules dependent on multiple indicators, such as the one proposed
by Davydiuk (2017). That rule includes three cyclical terms: a credit gap, a GDP gap, and
a liquidity premium. We also allow for a static buffer and optimize all the rule coefficients
for our model. Other than the static buffer, all the other coefficients become vanishingly
small when optimized. The intuition for this result is the same as for the other rules: There
is no stable dependence between the welfare-maximizing setting capital requirements and
aggregate indicators of the state of the business or credit cycle in the face of the array of
shocks of our model.

We conclude this section by highlighting that none of the simple rules, including the
optimized static buffer, eliminates bank failures. We develop intuition for this finding with
the results illustrated in Figure 9. The top panel shows the level of overall welfare. In line
with the results offered in Table 4, the welfare-maximizing static buffer is sized at about
85 basis points. The next two panels show, respectively, the contribution to welfare of the
liquidity services of deposits and the contribution of consumption. A higher capital buffer
reduces welfare from deposits, even if it frees up resources to sustain a higher consumption

33The consumption equivalent variation is derived in Section D of the appendix.
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level by reducing the failure rates of banks, as shown in the bottom panel. Higher buffers
could drive the failure rate to zero, but the optimal buffer balances allowing infrequent bank
failures with obtaining a higher liquidity value from deposits.

6.2 Another Check on the No-failure Rule

Returning to Table 4, the remaining rules are not implementable because of their infor-
mational requirements, but we offer them as a proof of concept. In line with our claim in
Section 4 that knowledge of the shocks is important in charting the appropriate response
of capital requirements, once we optimize a rule that responds to all shock processes (in-
cluding the current innovations), and the lagged value of the capital requirement, γt−1, the
rule becomes nearly identical to the no-failure rule—the bank failure rate drops to zero and
the static buffer can be lowered to a mere 1 basis point. Correspondingly, the consumption
equivalent variation for this rule is vanishingly small, below 1

10 of a basis point of permanent
consumption.

Once we optimize a rule that not only responds to all shocks processes but also includes
all the state variables, we replicate our candidate optimal rule—the correlation between the
capital requirements set by these two alternative specifications of the rule is 1. Accordingly,
there is no daylight between the last two rows of the table. Having restarted the optimization
of this comprehensive linear rule from a dispersed set of points and having failed to improved
on the no-failure rule, we take the no-failure rule to be optimal in the class of linear rules
with constant coefficients.

6.3 Volatility of Optimal Dynamic Capital Requirements

Table 4 shows that the volatility of the capital requirement, γt, is higher for the optimal
rule than for the optimized simple rules that respond to alternative key aggregate indicators.
Nonetheless, even for the optimal rule, the standard deviation of the capital requirement is
just below a modest one half of a percentage point.

Apart from the volatility of aggregate shocks, three key parameters affect the volatility
of γt: they are τ , the mean of the standard deviation of the idiosyncratic technology shock, ξ
the average penalty from financing risky firms; and ςd the inverse of the interest rate elasticity
of the household’s supply of bank deposits. An increase in τ, or a decrease in ξ, require a
larger adjustment in capital requirements under the no-failure rule but no change in their
cyclical properties. These results may not be too surprising, since these parameter changes
make risky loans more attractive.
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7 Conclusion

In our model, bank risk-taking is endogenous, and the temptation to take excessive (or
socially inefficient) risk is enabled by limited liability and government deposit insurance.
Both macroeconomic and market-volatility shocks can trigger bouts of excessive risk-taking
by lowering the expected return on safer investments. Capital requirements can eliminate
that temptation by forcing banks keep more skin in the game, but this may come at the cost
of limiting liquidity-producing deposits.

Our benchmark rule sets capital requirements at the lowest level compatible with ex-
cluding bank failures. Direct optimization of a linear rule that responds to all the state
variables of our model yields capital requirements that are perfectly correlated with those
of our benchmark rule. This finding is consistent with our benchmark rule being optimal in
the class of linear rules.

The benchmark no-failure rule is not implementable as it requires knowledge of the full
constellation of shocks that drive the economy. This rule raises capital requirements in booms
or busts, depending on the underlying shocks. And the same rule raises capital requirements
in response to an increase in market volatility that has little consequence for the business
cycle. Such informational requirements are daunting, even in our stylized model with only
two projects that banks can finance. Moving beyond our model, regulators would have to
keep track of expected relative returns for a myriad of possible projects and be able to track
the effects of a plethora of shocks.

It is tempting to look for key market indicators that might point the way to appropriate
changes in the capital requirement. However, we show that popular candidates, such as
growth in the credit-to-GDP ratio, are unlikely to be reliable.

Fortunately, a small static buffer—slightly higher than the optimal steady-state capital
requirement—avoids the Wile E. Coyote moments and achieves welfare levels close to the
optimal linear rule. Some finely tuned policy rules, such as a rule following the Basel III
guidance on the setting of countercyclical capital buffers, may sound sensibly grounded in
empirical regularities but turn out to do more harm than good in our model.

Recent work is taking up our challenge to devise simple and implementable rules that do
better than a static capital buffer. In this vein, Muñoz and Smets (2025) find that a rule that
responds to net interest margins can improve on a static buffer. However, they focus on few
sources of shocks. We do not find that a rule that responds to interest margins does well in
the context of our model when we allow for a plethora of shock sources. However, the model
in Muñoz and Smets (2025) has frictions that ours does not capture. Going forward, we
hope that our work can be a catalyst for theoretically consistent and empirically grounded
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analysis of the robustness of different rules. We see this type of work as essential for the
Hippocratic Oath—first, do no harm.
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Tables and Figures

Table 1: Model Parameters

Conventional Parameters
Parameter Value Interpretation

α 0.3 Capital share in production
δ 0.025 Depreciation rate
ϱc 1.1 Elasticity of substitution for consumption
ςd 1.1 Interest rate elasticity of supply of deposits

Model-Specific Parameters
Parameter Value Interpretation Explanation

β 0.9968 Discount rate Risk-free rate = 1.28%
γ 0.078 Capital requirement Equity-to-asset ratio = 7.8%
ς0 0.0298 Weight on liquidity in the utility function Risk-free rate − deposit rate = 0.55%
σ 0.01 Minimum risk that banks can take Needed for numerical solution
σ 0.99 Maximum risk that banks can take Needed for numerical solution
τ 0.046 Mean std. dev. of idiosyncratic shock Estimated by SMM
ξ 0.0012 Minus mean of idiosyncratic shock Estimated by SMM
ϕ 0.17 Investment adjustment costs Estimated by SMM
κ 0.76 Consumption habits Estimated by SMM

Aggregate Shock Processes
Shock AR(1) coef Innovation Std. Dev. Explanation
TFP 0.96 0.0101 Estimated by SMM
ISP 0.63 0.0098 Estimated by SMM

Volatility 0.71 0.0017 Estimated by SMM

Note: See Section 3 for a description of the calibration strategy. For the shock processes, TFP
refers to the total factor productivity shock, At; ISP refers to the investment-specific technology
shock, ηt, and Volatility, refers to the shock to the volatility of the idiosyncratic technology shock,
τt.
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Table 2: Second Moments Targeted: Data and Model Counterparts, 1980:Q1-
2024:Q4

Data Model Model Model
5th perc. 95th perc.

Var(GDP) 1.36 1.47 0.83 2.12
Corr(GDP,Investment) 0.88 0.98 0.97 0.99
Corr(GDP,Investment Price) -0.09 0.14 -0.16 0.38
Var(Investment) 14.90 14.89 8.61 21.20
Corr(Investment,Investment Price) 0.06 0.08 -0.21 0.34
Var(Investment Price) 0.52 0.91 0.57 1.19
Autocorr(GDP) 0.90 0.90 0.85 0.93
Autocorr(Investment) 0.94 0.89 0.85 0.92
Autocorr(Investment Price) 0.92 0.85 0.80 0.88
Avg. bank default rate, % 1.52 1.52 0.52 2.68
Avg. GDP Gap with high default, % -0.33 -0.33 -1.12 0.28

Note: The table reports the second moments targeted in the SMM procedure for the model cal-
ibration —variances, correlations, and autocorrelations at business-cycle frequencies. The model
moments are computed from a simulated sample of 5000 observations. In addition to the second
moments reported in the table, the SMM procedure targets the annualized average bank failure
rate, and the average GDP gap in quarters when the bank failure rate exceeded 1 percent.

Table 3: Variance Decomposition, 1980:Q1-2024:Q4

var(GDP) var(invest.) var(invest. p.) var(credit/GDP)
TFP 96 94 12 56
ISP 0 2 88 42
Volatility 4 4 0 2

Note: The table shows the variance decompositions, in percent, for GDP, gross investment, the
relative price of investment, and the credit-to-GDP ratio. TFP refers to the shock to total factor
productivity, At; ISP refers to the shock to investment-specific technology, ηt, and Volatility, refers
to the shock to the volatility of the idiosyncratic technology, τt.
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Table 4: Evaluating Alternative Rules for Capital Requirements

Std. Dev. Ave. Fail. Cons. Equiv.
Slope Buffer of γt Rate Average Variation

(percent) (perc. point) (annualized Welfare (percent)
percent)

Simple Rules
Credit-to-GDP
Ratio -0.000035 0.842 0.008 0.276 -208.92 0.021

GDP Gap 0.000986 0.791 0.104 0.363 -208.92 0.021
Expected
Banking Spread 0.051261 0.847 0.015 0.268 -208.92 0.021

Optimized Buffer 0.843 0 0.275 -208.92 0.021

Other Rules
Davydiuk (2017)
Rule See Note 0.833 0.139 0.250 -208.92 0.020

All Shocks & γt−1 See Note 0.010 0.459 0 -208.85 0.000
All Shocks
& State Variables See Note 0.010 0.458 0 -208.85 0.000

No-Failure Rule 0 0.458 0 -208.85 0

Note: The table allows welfare comparisons for different simple rules for the capital requirement γt

against the no-failure rule that sets bank capital requirements as just high enough to prevent bank failures.
The simple rules include a static buffer on top of the steady-state optimal level of capital and other terms.
The “Buffer” and “Slope” columns report, respectively, the buffer and the slope coefficient on the variable
entering the rule optimized to maximize welfare. For example, for the row “Credit-to-GDP Ratio” the
“Slope” column reports the optimized coefficient on the credit-to-GDP ratio. The column “Std. Dev. γt”
reports the standard deviation of the capital requirement, γt. The column “Ave. Fail. Rate” reports average
annualized failure rate—this is expressed as a ratio of the assets of failed banks to the assets in the banking
sector. Finally, the column “Cons. Equiv. Variation” reports the consumption equivalent variation, i.e., the
permanent change in consumption that would have to be offered with the simple rule in force to make the
representative household indifferent between the simple and the no-failure rule. The rule in the rows labeled
“Davydiuk (2017) Rule” responds to the credit-to-GDP ratio, GDP gap, and liquidity premium calculated as
the difference between the return on safe loans and the return on deposits. The rules in the rows labeled “All
Shocks & γt−1” and “All shocks & State Variables” respond, respectively, to: all shocks, their innovations,
and lagged capital requirements; and to all shocks, innovations, and state variables (which include lagged
capital requirements). The slope coefficients are too numerous to include here but can be accessed from the
replication codes.
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Figure 1: Elevated Credit Predicts Lower GDP, Model and Data, 1980:Q1 2024:Q4

Empirical Correlation = -0.11

90% Confidence Interval of Model Correlation = [-0.2, 0.17]
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Source: Authors’ calculations based on non-financial credit from the Bank of International Settle-
ments and GDP data from the U.S. Bureau of Economic Analysis (NIPA).
Note: The figure plots the empirical and model relationships between the ratio of non-financial
credit to GDP and real GDP two years ahead using data for the United States from the first
quarter of 1980 through the fourth quarter of 2024. The open circles show the observed data.
The solid line shows the regression between real GDP two years ahead and the credit-to-GDP
ratio from observed data. The shaded area denotes a 90 percent confidence interval for the same
regression slope coefficient using the model simulated data (1,000 samples with the same number
of observations as the observed sample). The credit-to-GDP ratio was detrended with a Hodrick-
Prescott filter using a coefficient of 400,000. Real GDP was detrended with a Hodrick-Prescott
filter using a coefficient of 1,600.
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Figure 2: Bank Failure Rate, 1980:Q1 2024:Q4

Annualized ratio of the assets of FDIC insured failed banks to total banking assets
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Source: Authors’ calculations based on FDIC list of failed banks, Call Report, and the H.8 Release
of the Federal Reserve Board.
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Figure 3: A Temporary Increase in the Bank Capital Requirement

Higher capital requirements reduce deposits but leave little imprint on the rest of the economy
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Note: This figure plots the responses of variables (in deviation from the steady state) to a one
percentage point increase in the capital requirement. The shock follows an AR(1) process with a
persistence parameter of 0.9.
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Figure 4: Asymmetric Effects of Higher and Lower Capital Requirements
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Note: This figure shows the responses of variables (in deviation from the steady state) to a one
percentage point change in the capital requirement. The shock follows an AR(1) process with a
persistence parameter of 0.9. The solid line shows the responses to a one percentage point rise in
the capital requirement. The dashed line shows the responses to a one percentage point fall in the
capital requirement.
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Figure 5: Alternative Steady States Depending on Bank Capital Requirements

The smallest capital requirement that prevents bank failures maximizes welfare.
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Note: For capital requirements to the left of the dashed vertical line, the model plunges in the risk-
taking regime with bank failures. No bank failures occur in the steady state for capital requirements
to the right of the dashed vertical line.
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Figure 6: A Negative TFP Shock

The no-failure rule raises the bank capital requirement in a recession.
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Note: The solid lines, denoted as “no-failure capital requirements,” show responses under a locally
optimal rule that sets capital requirements to be just small enough to prevent bank failures. The
dashed lines, denoted as “calibrated capital buffer,” show responses under a policy rule that keeps
the capital requirement at the steady-state value. The dashed-dotted lines, denoted as “no cap-
ital buffer,” show responses under a capital requirement held constant at the level that prevents
excessive risk-taking in the steady state.
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Figure 7: A Positive Investment Technology Shock

The no-failure rule raises the bank capital requirement in an expansion.
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Note: The solid lines, denoted as “no-failure capital requirements,” show responses under a locally
optimal rule that sets capital requirements to be just small enough to prevent bank failures. The
dashed lines, denoted as “calibrated capital buffer,” show responses under a policy rule that keeps
the capital requirement at the steady-state value. The dashed-dotted lines, denoted as “no cap-
ital buffer,” show responses under a capital requirement held constant at the level that prevents
excessive risk-taking in the steady state.
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Figure 8: A Shock that Raises the Volatility of the Returns from Risky Firms

The no-failure rule neutralizes the macroeconomic repercussions of the shock.
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Note: The solid lines, denoted as “no-failure capital requirements,” show responses under a locally
optimal rule that sets capital requirements to be just small enough to prevent bank failures. The
dashed lines, denoted as “calibrated capital buffer,” show responses under a policy rule that keeps
the capital requirement at the steady-state value. The dashed-dotted lines, denoted as “no cap-
ital buffer,” show responses under a capital requirement held constant at the level that prevents
excessive risk-taking in the steady state.
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Figure 9: Comparing the Performance of Alternative Static Capital Buffers
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Note: The vertical dashed line denotes the welfare-maximizing static capital buffer.
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This appendix consists of four sections. Section A completes the derivation of the equilibrium conditions
and provides proofs for propositions 1 and 2. Section B summarizes the equilibrium conditions for the model.
Section C provides further details on the mechanisms that trigger banks to take on excessive risk. Finally,
Section D derives a consumption equivalent variation that we use to interpret the welfare costs of simple
rules for capital requirements.
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A Derivation of Equilibrium Conditions
This section completes the derivation of the equilibrium conditions for the model. We tackle the op-

timization problem of households before considering banks and nonfinancial firms. We then consider the
financing of the deposit insurance scheme provided by the government. We conclude by stating the resource
constraints. Along the way, we prove propositions 1 and 2.

A.1 Households
In the main text, we consider a case in which we have only one representative household. The household

problem involves saving through deposits and bank equity, with the capital requirement on banks determining
the equilibrium split between these two assets, and providing labor services to firms inelastically. In our
baseline specification, we leave the managerial labor needed to run banks unmodeled. This is not too different
from abstracting from modeling the managerial services for other types of firms in the model. But there
are other approaches to setting up the household problem in models that include financial intermediaries
but that are in the standard RBC mold otherwise. Some of the alternatives include differentiating more
explicitly between roles within households.

In this section of the appendix, we spell out how to recast the setup for the household problem described
in the main text of the paper into an alternative with explicit differentiation between workers and bankers.
This recasting follows the blueprint in the model of Gertler and Karadi (2011), which splits the household
into workers and bankers. In that model, bankers receive an endowment untied to the utility maximization
problem of the household, whereas we endogenize the endowment choice. We will show that, mutatis
mutandis, there is no change in the equilibrium conditions relative to the baseline setup with a representative
household.

We assume here that households are composed of workers and two bankers. The household seeks to
maximize

max
Ct,Dt,Es

t ,Er
t

E0

∞∑
t=0

βt

[
(Ct − κCt−1)1−ςc − 1

1 − ςc
+ ς0

D1−ςd
t − 1
1 − ςd

]
,

where 0 < β < 1 is the worker’s subjective discount factor, assumed identical across workers, i.e. βw = β for
all w.

This maximization problem is subject to the sequence of budget constraints

Ct +Dt + Es
t + Er

t = Wt +Rd
t−1Dt−1 +Re,s

t Es
t−1 +Re,r

t Er
t−1 − Tt,

Es
t ≥ 0,

Er
t ≥ 0.

Households save through deposits, Dt, which pay a gross real rate Rd
t , and by endowing bankers with

initial capital: Es
t is the endowment for bankers operating a “safe” bank, which lends to a safe firm and pays

Re,s
t+1 next period; Er

t is the endowment for bankers operating a “risky” bank, which lends to a risky firm
and pays Re,r

t+1. As for the baseline formulation of the household problem, the returns that will be shared by
the bankers are not known when the household makes the endowment decisions. By contrast, the return on
deposits is known, and deposits are protected by deposit insurance. Households pay lump sum taxes, Tt, to
fund the government’s deposit insurance program.
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Bankers run banks that they do not own.1 They are elected to run as bankers for two periods at the end
of which they return to the household. They share consumption with the household as well as the proceeds
from running safe and risky banks at the end of the two-period stint as managers.

As in the new-Keynesian literature that considers sticky wages, see for example Erceg et al. (2000), we
assume that households can also access a complete set of state contingent claims traded across households
but in zero net supply—we leave this set unspecified in the households’ objective functions and constraints.
These state-contingent claims ensure equalization of consumption and deposit decisions across households,
counteracting the idiosyncratic risk born by operating only one risky bank. In our baseline formulation of
the household problem, we do not need this additional assumption as we think of bank equity in the same
vein as a mutual fund that assigns aliquot shares of capital to different banks.

Using λct as the Lagrangian multiplier on the budget constraint, and ζs
t and ζr

t on the non-negativity
constraints for safer and risky equity, respectively, the FOCs of the representative household’s problem are:

Ct : (Ct − κCt−1)−ςc − βκEt (Ct+1 − κCt)−ςc − λct = 0, (A.1)

Dt : ς0D
−ςd
t − λct + βEt {λct+1}Rd

t = 0, (A.2)

Es
t : −λct + βEt

{
λct+1R

e,s
t+1
}

+ ζs
t = 0, (A.3)

Er
t : −λct + βEt

{
λct+1R

e,r
t+1
}

+ ζr
t = 0 (A.4)

together with the complementary slackness conditions:

ζs
tE

s
t = 0, (A.5)

ζr
t E

r
t = 0. (A.6)

These conditions are equivalent to the conditions that characterize the solution to the household’s prob-
lem in the main text: equation (A.1) corresponds to (16) in the main text, (A.2) corresponds to (17) in the
main text, (A.3) corresponds to (18) in the main text, (A.4) corresponds to (19) in the main text, (A.5)
corresponds to (20) in the main text, and (A.6) corresponds to (21) in the main text.

A.2 The Bank’s Problem
There is a unit measure of banks. As described in Section 2.3.2, banks maximize expected dividends

max
lt,dt,et,σt

Et

ψt.t+1

 ∞̂

ε∗
t+1

nwt+1 dG(εt+1)


− et,

subject to

lt = et + dt,

et ≥ γtlt,

lt ≥ 0,

σ ≤ σt ≤ σ,

1Bankers can be viewed as managers with expertise in operating firms.
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where ψt,t+1 = β λct+1
λct

is the stochastic discount factor.
A reminder on notation is in order. We use lower-case letters to denote variables pertaining to single

banks or firms, and upper-case letters to denote aggregate variables.

A.2.1 First-Order Conditions

Substituting dt = lt−et into the maximization problem and writing dG(εt+1) explicitly turn the objective
into

max
lt,et,σt

Et

ψt,t+1

 ∞̂

ε∗
t+1

((
Rs

t+1 + σt
εt+1

Qt

)
lt −Rd

t (lt − et)
)

1√
2πτ2

t

exp
(

− (εt+1 + ξ)2

2τ2
t

)
dεt+1

− et

 ,

subject to

et ≥ γtlt,

lt ≥ 0,

σ ≤ σt ≤ σ,

where ψt,t+1 = β λct+1
λct

is the stochastic discount factor and ε∗
t+1 =

(
Rd

t −Rs
t+1

σt
− Rd

t et

σtlt

)
Qt is the shield of

limited liability. Note that we expressed ε∗
t+1 from

(
Rs

t+1 + σt
ε∗

t+1
Qt

)
lt − Rd

t (lt − et) = 0 to get the lower
limit of the integral.

Append the Lagrangian multiplier χ1t to the constraint et ≥ γlt and χ2t to the constraint lt ≥ 0. We
will split the maximization problem into two parts. We will first condition on a choice of risk, σt, and then
show how to pin down that choice (see Section A.2.6). Accordingly, conditional on the optimal choice of σt,
the first-order conditions are:

∂L
∂lt

= Et

ψt,t+1

=0︷ ︸︸ ︷((
Rs

t+1 + σt

(
Rd

t −Rs
t+1

σt
− Rd

t et

σtlt

))
lt −Rd

t (lt − et)
)

·
∂ε∗

t+1
∂lt

+ χ2t+

Et

 ∞̂

ε∗
t+1

ψt,t+1
∂

∂lt

((
Rs

t+1 + σt
εt+1

Qt

)
lt −Rd

t (lt − et)
)

1√
2πτ2

t

exp
(

− (εt+1 + ξ)2

2τ2
t

)
dεt+1

− γχ1t = 0.

∂L
∂et

= −Et

ψt,t+1

=0︷ ︸︸ ︷((
Rs

t+1 + σt

(
Rd

t −Rs
t+1

σt
− Rd

t et

σtlt

))
lt −Rd

t (lt − et)
)

·
∂ε∗

t+1
∂et

+ χ1t+

Et

 ∞̂

ε∗
t+1

ψt,t+1
∂

∂et

((
Rs

t+1 + σt
εt+1

Qt

)
lt −Rd

t (lt − et)
)

1√
2πτ2

t

exp
(

− (εt+1 + ξ)2

2τ2
t

)
dεt+1

− 1 = 0,

4
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together with the complementary slackness conditions:

χ1t (et − γtlt) = 0,

χ2tlt = 0,

et − γtlt ≥ 0,

lt ≥ 0,

χ1t ≥ 0,

χ2t ≥ 0,

We are using the Leibniz integral rule above to find the partial derivatives of the profit function. Note
that the first term is zero in the differentiation because the upper limit of the integral does not depend on
any of the choice variables.

Next, express the integrals in the first-order conditions above using the erf function, wherever possible.
Note that we omit the stochastic discount factor and the expectation operator in writing up the expressions
of the next integrals. We include those terms in the final exposition.

Work on ∂
∂lt

:

∞̂

(
Rd

t
−Rs

t+1
σt

−
Rd

t
et

σtlt

)
Qt

∂

∂lt

((
Rs

t+1 + σt
εt+1

Qt

)
lt −Rd

t (lt − et)
)

1√
2πτ2

t

exp
(

− (εt+1 + ξ)2

2τ2
t

)
dεt+1 =

∞̂

(
Rd

t
−Rs

t+1
σt

−
Rd

t
et

σtlt

)
Qt

(
Rs

t+1 + σt
εt+1

Qt
−Rd

t

)
1√

2πτ2
t

exp
(

− (εt+1 + ξ)2

2τ2
t

)
dεt+1 =

Break the calculation of the integral into two parts.

σt

Qt

∞̂

(
Rd

t
−Rs

t+1
σt

−
Rd

t
et

σtlt

)
Qt

εt+1
1√

2πτ2
t

exp
(

− (εt+1 + ξ)2

2τ2
t

)
dεt+1+

(
Rs

t+1 −Rd
t

) ∞̂

(
Rd

t
−Rs

t+1
σt

−
Rd

t
et

σtlt

)
Qt

1√
2πτ2

t

exp
(

− (εt+1 + ξ)2

2τ2
t

)
dεt+1.

Work on the first part

∞̂

(
Rd

t
−Rs

t+1
σt

−
Rd

t
et

σtlt

)
Qt

εt+1
1√

2πτ2
t

exp
(

− (εt+1 + ξ)2

2τ2
t

)
dεt+1,

by introducing a change in variables to recast the integral in terms of the Standard Normal distribution.
Use v = εt+1+ξ√

2τt
, or equivalently εt+1 = v

√
2τt − ξ, and remember that for the change x = φ(t), the

5
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integral
´ φ(b)

φ(a) f(x)dx becomes
´ b

a
f(φ(t))φ′(t)dt. Here, we use that dv = dεt+1√

2τt
, so we need to multiply dv by√

2τt to express dεt+1 in terms of dv. Moreover, we need to transform the lower limit using v. So we need
to add ξ to the lower limit of the integral and divide the result by

√
2τt.

∞̂

(Rd
t

(lt−et)−Rs
t+1lt)Qt+ξσtlt

σtlt
√

2τt

(
v
√

2τt − ξ
) √

2τt√
2πτ2

t

exp
(
−v2) dv =

√
2τt√
π

∞̂

(Rd
t

(lt−et)−Rs
t+1lt)Qt+ξσtlt

σtlt
√

2τt

v exp
(
−v2) dv − ξ√

π

∞̂

(Rd
t

(lt−et)−Rs
t+1lt)Qt+ξσtlt

σtlt
√

2τt

exp
(
−v2) dv =

−
√

2τt

2
√
π

exp
(
−v2)∣∣∣∣∞(Rd

t
(lt−et)−Rs

t+1lt)Qt+ξσtlt

σtlt
√

2τt

− ξ√
π


∞̂

0

exp
(
−v2) dv −

(Rd
t

(lt−et)−Rs
t+1lt)Qt+ξσtlt

σtlt
√

2τtˆ

0

exp
(
−v2) dv

 =

0 + lt
τt√
2π

exp

−

((
Rd

t (lt − et) −Rs
t+1lt

)
Qt + ξσtlt

σtlt
√

2τt

)2
−

ξ√
π

[√
π

2 erf(∞) −
√
π

2 erf
((

Rd
t (lt − et) −Rs

t+1lt
)
Qt + ξσtlt

σtlt
√

2τt

)]
=

τt√
2π

exp

−

((
Rd

t (lt − et) −Rs
t+1lt

)
Qt + ξσtlt

σtlt
√

2τt

)2
− ξ

2

[
1 − erf

((
Rd

t (lt − et) −Rs
t+1lt

)
Qt + ξσtlt

σtlt
√

2τt

)]
,

where we used that erf(x) = 2√
π

´ x

0 exp
(
−v2).

Therefore,

∞̂

(
Rd

t
−Rs

t+1
σt

−
Rd

t
et

σtlt

)
Qt

εt+1
1√

2πτ2
t

exp
(

− (εt+1 + ξ)2

2τ2
t

)
dεt+1 =

τt√
2π

exp

−

((
Rd

t (lt − et) −Rs
t+1lt

)
Qt + ξσtlt

σtlt
√

2τt

)2
− ξ

2

[
1 − erf

((
Rd

t (lt − et) −Rs
t+1lt

)
Qt + ξσtlt

σtlt
√

2τt

)] (A.7)

Moving to the second part, let us express
∞̂

(
Rd

t
−Rs

t+1
σt

−
Rd

t
et

σtlt

)
Qt

(
1√

2πτ2
t

exp
(

− (εt+1 + ξ)2

2τ2
t

))
dεt+1 in

6
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terms of the error function. Again, use the transformation v = εt+1+ξ√
2τt

or εt+1 = v
√

2τt − ξ

∞̂

(Rd
t

(lt−et)−Rs
t+1lt)Qt+ξσtlt

σtlt
√

2τt

√
2τt√

2πτ2
t

exp
(
−v2) dv = 1√

π

∞̂

(Rd
t

(lt−et)−Rs
t+1lt)Qt+ξσtlt

σtlt
√

2τt

exp
(
−v2) dv =

1
2

(
1 − erf

((
Rd

t (lt − et) −Rs
t+1lt

)
Qt + ξσtlt

σtlt
√

2τt

))
.

Therefore,
∞̂

(
Rd

t
−Rs

t+1
σt

−
Rd

t
et

σtlt

)
Qt

(
1√

2πτ2
t

exp
(

− (εt+1 + ξ)2

2τ2
t

))
dεt+1 =

1
2

(
1 − erf

((
Rd

t (lt − et) −Rs
t+1lt

)
Qt + ξσtlt

σtlt
√

2τt

))
.

(A.8)

Combining the results for the two parts and simplifying,

Et


∞̂

(
Rd

t
−Rs

t+1
σt

−
Rd

t
et

σtlt

)
Qt

∂

∂lt

((
Rs

t+1 + σt
εt+1

Qt

)
lt −Rd

t (lt − et)
)

1√
2πτ2

t

exp
(

− (εt+1 + ξ)2

2τ2
t

)
dεt+1

 =

Et


∞̂

(
Rd

t
−Rs

t+1
σt

−
Rd

t
et

σtlt

)
Qt

(
Rs

t+1 + σt
εt+1

Qt
−Rd

t

)
1√

2πτ2
t

exp
(

− (εt+1 + ξ)2

2τ2
t

)
dεt+1

 =

Et

 σt

Qt

τt√
2π

exp

−

((
Rd

t (lt − et) −Rs
t+1lt

)
Qt + ξσtlt

σtlt
√

2τt

)2
− σtξ

2Qt

[
1 − erf

((
Rd

t (lt − et) −Rs
t+1lt

)
Qt + ξσtlt

σtlt
√

2τt

)]+

Et

[(
Rs

t+1 −Rd
t

) 1
2

(
1 − erf

((
Rd

t (lt − et) −Rs
t+1lt

)
Qt + ξσtlt

σtlt
√

2τt

))]
=

Et

 σt

Qt

τt√
2π

exp

−

((
Rd

t (lt − et) −Rs
t+1lt

)
Qt + ξσtlt

σtlt
√

2τt

)2
 +

(
Rs

t+1 − σtξ
Qt

−Rd
t

2

)[
1 − erf

((
Rd

t (lt − et) −Rs
t+1lt

)
Qt + ξσtlt

σtlt
√

2τt

)]]
.

Similarly, work on ∂
∂et

∞̂

(
Rd

t
−Rs

t+1
σt

−
Rd

t+1et

σtlt

)
Qt

∂

∂et

((
Rs

t+1 + σt
εt+1

Qt

)
lt −Rd

t (lt − et)
)

1√
2πτ2

t

exp
(

− (εt+1 + ξ)2

2τ2
t

)
dεt+1 =

∞̂

(
Rd

t
−Rs

t+1
σt

−
Rd

t+1et

σtlt

)
Qt

Rd
t

1√
2πτ2

t

exp
(

− (εt+1 + ξ)2

2τ2
t

)
dεt+1 = Rd

t

1
2

(
1 − erf

(
Rd

t (lt − et) −Rs
t+1lt + ξσtlt

σtlt
√

2τt

))
.
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In sum, the FOCs can be written as follows:

Et

β λct+1

λct

 σt

Qt

τt√
2π

exp

−


(
Rd

t

(
1 − et

lt

)
−Rs

t+1

)
Qt + ξσt

σt

√
2τt

2 +

(
Rs

t+1 − σtξ
Qt

−Rd
t

2

)1 − erf


(
Rd

t

(
1 − et

lt

)
−Rs

t+1

)
Qt + ξσt

σt

√
2τt

+ χ2t = γχ1t,

(A.9)

Et

β λct+1

λct

Rd
t

1
2

1 − erf


(
Rd

t

(
1 − et

lt

)
−Rs

t+1

)
Qt + ξσt

σt

√
2τt

− 1 + χ1t = 0. (A.10)

Finally, the complementary slackness conditions can be expressed as

(et − γlt)χ1t = 0, (A.11)

ltχ2t = 0. (A.12)

A.2.2 Proof of Proposition 1

In equilibrium, capital requirements always bind; that is,

et = γtlt.

We will show that the Lagrange multiplier associated with this constraint is always positive, hence the
constraint must bind. To this end, we also employ the household problem’s first-order conditions (FOCs)
with respect to equity, described in Appendix A.1.

Equations (A.3) and (A.4) can be expressed as

βEt

{
λct+1

λct
Re,i

t+1

}
= 1 − ζi

t

λct
,

where i ∈ {s, r} denotes the type of equity. In this expression, substitute equation (A.10) for 1. Therefore,

Et

β λct+1

λct

Rd
t

1
2

1 − erf


(
Rd

t

(
1 − ei

t

li
t

)
−Rs

t+1

)
Qt + ξσi

t

σi
t

√
2τt

−Re,i
t+1

− ζi
t

λct
+ χi

1t = 0. (A.13)

Since the range of the erf function is between −1 and 1, i.e.−1 ≤ erf(x) ≤ 1, we know that the following
expression is between Ψi∗

1 and Ψi∗
2 :

Ψi∗
1 ≤ Et

β λct+1

λct

Rd
t

1
2

1 − erf


(
Rd

t

(
1 − ei

t

li
t

)
−Rs

t+1

)
Qt + ξσi

t

σi
t

√
2τt

−Re,i
t+1

 ≤ Ψi∗
2 ,

8
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where

Ψi∗
1 = Et

{
β
λct+1

λct

[
0 −Re,i

t+1

]}
,

Ψi∗
2 = Et

{
β
λct+1

λct

[
Rd

t −Re,i
t+1

]}
.

Plugging λct from equations (A.3) an (A.4) into equation (A.2), we get:

Et

{
βλct+1

[
Rd

t −Re,i
t+1

]}
= −ς0D−ςd

t + ζi
t .

Note that ς0D−ςd
t > 0 under the usual (and mild) assumptions on the preferences for liquidity. Moreover,

the Lagrangian multiplier on the households budget constraint, λct, is positive. It reflects the fact that the
budget constraint always binds given the standard assumptions on the preferences (the Inada conditions).
The latest expression is transformed into the following after dividing it by λct:

Et

{
β
λct+1

λct

[
Rd

t −Re,i
t+1

]}
︸ ︷︷ ︸

=Ψi∗
2

− ζi
t

λct
= − ς0D

−ςd
t

λct
< 0.

Thus, Ψi∗
2 <

ζi
t

λct
.

Rewriting Equation (A.13)

Et

β λct+1
λct

Rd
t

1
2

1 − erf

(Rd
t

(
1−

ei
t

li
t

)
−Rs

t+1

)
Qt+ξσi

t

σi
t

√
2τt

−Re,i
t+1

 = ζi
t

λct
− χi

1t,

combine it with Ψi∗
2 <

ζi
t

λct
to find

ζi
t

λct
− χ1t < Ψi∗

2 <
ζi

t

λct
.

Hence, χi
1t > 0 for each i ∈ {s, r}. □

A.2.3 Combined First-Order Conditions

Et

{
β λct+1

λct

[
σt

Qt

τt√
2π

exp
(

−
(

(Rd
t (1− et

lt
)−Rs

t+1)Qt+ξσt

σt

√
2τt

)2
)

+(
Rs

t+1− σtξ
Qt

−Rd
t

2

)[
1 − erf

(
(Rd

t (1− et
lt

)−Rs
t+1)Qt+ξσt

σt

√
2τt

)]]}
+ χ2t = γχ1t,

Et

{
β λct+1

λct

[
Rd

t
1
2

(
1 − erf

(
(Rd

t (1− et
lt

)−Rs
t+1)Qt+ξσt

σt

√
2τt

))]}
− 1 + χ1t = 0.

Since χ1t > 0, multiply the second equation by γt and add it to the first equation using et

lt
= γt. Therefore,

9
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the FOCs can be combined into:

Et

β λct+1

λct

 σt

Qt

τt√
2π

exp

−

((
Rd

t (1 − γt) −Rs
t+1
)
Qt + ξσt

σt

√
2τt

)2
+

1
2

(
Rs

t+1 − σtξ

Qt
−Rd

t (1 − γt)
)[

1 − erf
((

Rd
t (1 − γt) −Rs

t+1
)
Qt + ξσt

σt

√
2τt

)]]}
= γt − χ2t,

(A.14)

χ2tlt = 0. (A.15)

A.2.4 Zero-Profit Condition

In step 1, we derive the expression of the zero-profit condition under all states of nature. In step 2, we
show that this zero-profit condition implies the FOCs derived in Appendix A.2.3.

Step 1: Since there is no agency problem between banks and households, this condition captures the fact
that all the profits (or losses) are distributed to equity holders after realization of shocks at the beginning
of each period. In each aggregate state, banks whose investments in risky firms pan out will have returns
that satisfy on average (over the realizations of the idiosyncratic shock)

[(
Rs

t+1 + σt

Qt

)
lt −Rd

t (lt − et)
]

−´
Re

t+1,b(b) · et = 0, where the bounds of the integral are chosen such that we integrate over banks for
which the profit is non-negative, while banks whose risky investments earn low (negative) returns will have
Re

t+1,b = 0. Therefore,

Re
t+1 =

∞̂

(
Rd

t
(1−γt)−Rs

t+1
σt

)
Qt

((
Rs

t+1 + σt
εt+1
Qt

)
lt −Rd

t dt

)
1√

2πτ2
t

exp
(

− (εt+1+ξ)2

2τ2
t

)
dεt+1

et
+

(
Rd

t
(1−γt)−Rs

t+1
σt

)
Qtˆ

−∞

0 · 1√
2πτ2

t
exp

(
− (εt+1 + ξ)2

2τ2
t

)
dεt+1 =

1
et

∞̂

(
Rd

t
(1−γt)−Rs

t+1
σt

)
Qt

(
Rs

t+1lt −Rd
t dt

) 1√
2πτ2

t

exp
(

− (εt+1 + ξ)2

2τ2
t

)
dεt+1 +

1
et

∞̂

(
Rd

t
(1−γt)−Rs

t+1
σt

)
Qt

σt
εt+1

Qt
lt

1√
2πτ2

t

exp
(

− (εt+1 + ξ)2

2τ2
t

)
dεt+1 =

1
et

[(
Rs

t+1lt −Rd
t dt

) 1
2

(
1 − erf

(
(Rd

t (1−γt)−Rs
t+1)Qt+ξσt

σt

√
2τt

))
+

σtlt

Qt

(
τt√
2π

exp
(

−
(

(Rd
t (1−γt)−Rs

t+1)Qt+ξσt

σt

√
2τt

)2
)

− ξ
2

[
1 − erf

(
(Rd

t (1−γt)−Rs
t+1)Qt+ξσt

σt

√
2τt

)])]
=

10
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lt

et

{
σt

Qt

τt√
2π

exp
(

−
(

(Rd
t (1−γt)−Rs

t+1)Qt+ξσt

σt

√
2τt

)2
)

+

1
2

(
Rs

t+1 − σtξ
Qt

−Rd
t (1 − γt)

)[
1 − erf

(
(Rd

t (1−γt)−Rs
t+1)Qt+ξσt

σt

√
2τt

)]}
.

Since lt

et
= 1

γt
, we can rewrite the latter condition as (using that it holds for each i ∈ {s, r}):

Re,i
t+1 = 1

γt

σi
t

Qt

τt√
2π

exp

−

((
Rd

t (1 − γt) −Rs
t+1
)
Qt + ξσi

t

σi
t

√
2τt

)2
+

1
γt

1
2

(
Rs

t+1 − σi
tξ

Qt
−Rd

t (1 − γt)
)[

1 − erf
((

Rd
t (1 − γt) −Rs

t+1
)
Qt + ξσi

t

σi
t

√
2τt

)]
.

(A.16)

Step 2: Note that the combined FOC from Appendix A.2.3 can be expressed as:

Et

β λct+1

λct

 σi
t

Qt

τt√
2π

exp

−

((
Rd

t (1 − γt) −Rs
t+1
)
Qt + ξσi

t

σi
t

√
2τt

)2
+

1
2

(
Rs

t+1 − σi
tξ

Qt
−Rd

t (1 − γt)
)[

1 − erf
((

Rd
t (1 − γt) −Rs

t+1
)
Qt + ξσi

t

σi
t

√
2τt

)]]}
=

γt − χi
2t = γt

(
Et

{
β
λct+1

λct
Re,i

t+1

}
+ ζi

t

λct

)
− χi

2t,

(A.17)

where we substitute for 1 from Household’s FOC with respect to the two types of equity, i.e.,

βEt

{
λct+1

λct
Re,i

t+1

}
= 1 − ζi

t

λct

for each i ∈ {s, r}.
When lit > 0, the complementary slackness conditions in equations (A.5), (A.6), and (A.15) imply both

ζi
t = 0 and χi

2t = 0. Plugging these results into equation (A.17):

Et

{
β
λct+1

λct
Re,i

t+1

}
= 1
γt
Et

β λct+1

λct

 σi
t

Qt

τt√
2π

exp

−

((
Rd

t (1 − γt) −Rs
t+1
)
Qt + ξσi

t

σi
t

√
2τt

)2
+

1
2

(
Rs

t+1 − σi
tξ

Qt
−Rd

t (1 − γt)
)[

1 − erf
((

Rd
t (1 − γt) −Rs

t+1
)
Qt + ξσi

t

σi
t

√
2τt

)]]}
.

(A.18)

Notice that equation (A.18) differs from the zero-profit condition in equation (A.18) by only the stochastic
discount factor attached to the both sides of the equation. Therefore, the zero-profit condition implies the
FOC.
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A.2.5 Expression of Expected Dividends

Expected dividends (valued on date t) are defined as

Ω (σt; lt, dt, et) = −et+

Et

β λct+1

λct

∞̂

(
Rd

t
(lt−et)
σtlt

−
Rs

t+1
σt

)
Qt

((
Rs

t+1 + σt
εt+1

Qt

)
lt −Rd

t (lt − et)
)

1√
2πτ2

t

exp
(

− (εt+1 + ξ)2

2τ2
t

)
dεt+1


In Appendix A.2.1, we calculated all the necessary ingredients for the above integral. Multiply equation

(A.7) by σtlt

Qt
and make a sum with equation (A.8) multiplied by Rs

t+1lt −Rd
t (lt − et)). Use that the capital

requirement always binds, i.e., et = γtlt Therefore,

Ω (σt; lt, dt, et) = −ltγt+

ltEt

β λct+1

λct

 σt

Qt

τt√
2π

exp

−

((
Rd

t (1 − γt) −Rs
t+1
)
Qt + ξσt

σt

√
2τt

)2
+

(
Rs

t+1 −Rd
t (1 − γt) − σtξ

Qt

)
2

[
1 − erf

((
Rd

t (1 − γt) −Rs
t+1
)
Qt + ξσt

σt

√
2τt

)] .

(A.19)

We define ε∗
t+1 as the realization of the idiosyncratic shock below which the bank’s net worth is negative;

that is,
(
Rs

t+1 + σt
ε∗

t+1
Qt

)
lt −Rd

t dt = 0. Expressing

ε∗
t+1 = −Qt

σt

[
Rs

t+1 −Rd
t (1 − γt)

]
and plugging it into the cdf of the Normal distribution:

G(ε∗
t+1) = 1

2

[
1 + erf

(
ε∗

t+1 + ξ

τt

√
2

)]
= 1

2

[
1 + erf

(
− Qt

σt

[
Rs

t+1 −Rd
t (1 − γt)

]
+ ξ

τt

√
2

)]
.

Therefore, 1 −G(ε∗
t+1) =

1 − 1
2

[
1 + erf

(
− Qt

σt

[
Rs

t+1 −Rd
t (1 − γt)

]
+ ξ

τt

√
2

)]
= 1

2 − 1
2erf

((
Rd

t (1 − γt) −Rs
t+1
)
Qt + ξσt

σt

√
2τt

)
.

Using these results, we can re-write equation (A.19) as follows:

Ω (σt; lt, dt, et) = −ltγt + ltEt

{
β
λct+1

λct

[(
Rs

t+1 −Rd
t (1 − γt) − ξσt

Qt

)(
1 −G(ε∗

t+1)
)

+(
σt

Qt

)
τt√
2π

exp
(

−
(
ε∗

t+1 + ξ

τt

√
2

)2
)]}

.

(A.20)
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By denoting

ω1 ≡
(
Rs

t+1 −Rd
t (1 − γt) − ξσt

Qt

)(
1 −G(ε∗

t+1)
)
,

ω2 ≡
(
σt

Qt

)
τt√
2π

exp
(

−
(
ε∗

t+1 + ξ

τt

√
2

)2
)
,

Equation (A.20) can be described as

Ω(σt; lt, dt, et) = (Et [ψt,t+1 (ω1 + ω2)] − γt) lt.

A.2.6 Choice of Risk

In this section of the appendix, we prove that the expected dividend function of banks is convex in the
risk parameter σt. This result guarantees that banks choose either the maximum risk, σ, or the minimum
risk, σ, to maximize expected shareholder value, net of initial equity investment. So all the intermediate
values of σt, which may result from the first-order conditions with respect to σt, are not optimal.

The proof provided here generalizes the proof of Van den Heuvel (2008) to the presence of aggregate
uncertainty. Our proof applies to an arbitrary distribution of the idiosyncratic shock, εt+1, with non-positive
mean, so our example of a Normal distribution considered in the analysis is not a special case that can drive
our results.

Assumption. ε has a cumulative distribution function Gε with support [ε, ε], with ε < 0 < ε. The mean of
ε is equal to −ξ (ξ > 0). ε is independent of the aggregate shock. The aggregate shock does not depend on
the choice of σt.

Note that we do not restrict the analysis to the bounded support2, so ε and ε can take −∞ and +∞,
respectively. Note that Gε need not be continuous.

Let ε̂(σt, R
s
t+1) ≡

(
Rd

t dt

σtlt
− Rs

t+1
σt

)
Qt = Rd

t (1−γt)−Rs
t+1

σt
Qt, where the latter equation uses the result that

the capital requirement constraint always binds. It denotes the realization of the idiosyncratic shock below

which the bank’s net worth is negative. Let π(σt, R
s
t+1) = Eε

[((
Rs

t+1 + σtε
Qt

)
lt −Rd

t dt

)+
]

be a function

of expected net worth (taken over the idiosyncratic shock only) under some realization of Rs
t+1 which is

considered to be fixed in this function. To account for the aggregate uncertainty, Rs
t+1 needs to be a random

variable. Therefore, expected net worth taken into account both idiosyncratic and aggregate uncertainty is

Π(σt) =
ˆ

Ω

ψt,t+1π
(
σt, R

s
t+1(ω)

)
P (dω) = Et

ψt,t+1

εˆ

ε̂(σt, Rs
t+1)

((
Rs

t+1 + σtε

Qt

)
lt −Rd

t dt

)
dGε

 =

Et

ψt,t+1

εˆ

ε

((
Rs

t+1 + σtε

Qt

)
lt −Rd

t dt

)
dGε

− Et

ψt,t+1

ε̂(σt, Rs
t+1)ˆ

ε

((
Rs

t+1 + σtε

Qt

)
lt −Rd

t dt

)
dGε

 =

2Unbounded support is more relevant if we consider aggregate risk
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Et

[
ψt,t+1

(
Rs

t+1lt −Rd
t dt − σtξ

Qt
lt

)]
− σtlt

Qt
Et

ψt,t+1

ε̂(σt, Rs
t+1)ˆ

ε

(
ε− ε̂(σt, R

s
t+1)

)
dGε

 =

Et

[
ψt,t+1

(
Rs

t+1lt −Rd
t dt

)]
+ lt
Qt

σtEt

ψt,t+1

ε̂(σt, Rs
t+1)ˆ

ε

(
ε̂(σt, R

s
t+1) − ε

)
dGε

− σtξEtψt,t+1

 .

Note that in the derivations above we express
(
Rs

t+1 + σtε
Qt

)
lt −Rd

t dt in terms of ε̂(σt, R
s
t+1) and ε using

the definition of ε̂(σt, R
s
t+1).

The proof below shows that Π(σt) is convex in σt. Note that the expression of Π(σt) involves the term
which is linear in σt and lt

Qt
≥ 0. Moreover, ψt,t+1 > 0. Therefore, the sufficient condition for Π(σt) to be

convex in σt is that

H(σt) ≡ Et

[ˆ ε̂(σt)

ε

(ε̂(σt) − ε) dGε

]
σt

is convex in σt.

Claim. H(σt) ≡ Et

[´ ε̂(σt)
ε

(
ε̂(σt, R

s
t+1) − ε

)
dGε

]
σt is convex in σt:

Proof. Steps of the proof:

1. Define h(σt, R
s
t+1) ≡ σt

[´ ε̂(σt, Rs
t+1)

ε

(
ε̂(σt, R

s
t+1) − ε

)
dGε

]
in which the aggregate uncertainty is

taken off. Consider 3 cases:

(a) The realization of Rs
t+1 is such that ε̂(σt, R

s
t+1) = Rd

t (1−γt)−Rs
t+1

σt
> 0, so Rs

t+1 < Rd
t (1 − γt) ,

(b) The realization of Rs
t+1 is such that ε̂(σt, R

s
t+1) = Rd

t (1−γt)−Rs
t+1

σt
< 0, so Rs

t+1 > Rd
t (1 − γt) ,

(c) The realization of Rs
t+1 is such that ε̂(σt, R

s
t+1) = Rd

t (1−γt)−Rs
t+1

σt
= 0, so Rs

t+1 = Rd
t (1 − γt) ,

Show that h(σt, R
s
t+1) is convex in σt in cases 1a and 1b and h(σt, R

s
t+1) is linear in σt in case 1c.

2. Employ the argument that convexity is preserved under non-negative scaling and addition (guaranteed
by the expectation operator over the aggregate uncertainty) to find that H(σt) is convex.

Let’s show each step of the proof formally:

1. Let σ1t < σ2t and, for λ ∈ (0, 1), define σλt = λσ1t + (1 − λ)σ2t. Let ε̂i = ε̂(σit, R
s
t+1) ≡

Rd
t (1−γt)−Rs

t+1
σit

Qt, for i = 1, 2, λ. Therefore,

ε̂1σ1t = ε̂2σ2t = ε̂λ(λσ1t + (1 − λ)σ2t) (A.21)

Using the definition of the convex function, we need to show that

h(σλt) ≤ λh(σ1t) + (1 − λ)h(σ2t).

(a) Rs
t+1 < Rd

t (1 − γt): it implies that ε̂2 < ε̂λ < ε̂1,

h(σλt) = (λσ1t + (1 − λ)σ2t)
{ˆ ε̂(σλt)

ε

(ε̂(σλt) − ε) dGε

}
=

14
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λσ1t

{ˆ ε̂1

ε

(ε̂λ − ε) dGε −
ˆ ε̂1

ε̂λ

(ε̂λ − ε) dGε

}
+

(1 − λ)σ2t

{ˆ ε̂2

ε

(ε̂λ − ε) dGε +
ˆ ε̂λ

ε̂2

(ε̂λ − ε) dGε

}
=

λσ1t

{ˆ ε̂1

ε

(ε̂1 − ε) dGε + (ε̂λ − ε̂1)Gε(ε̂1) +
ˆ ε̂1

ε̂λ

(ε− ε̂λ) dGε

}
+

(1 − λ)σ2t

{ˆ ε̂2

ε

(ε̂2 − ε) dGε + (ε̂λ − ε̂2)Gε(ε̂2) +
ˆ ε̂λ

ε̂2

(ε̂λ − ε) dGε

}
≤

λσ1t

{ˆ ε̂1

ε

(ε̂1 − ε) dGε + (ε̂λ − ε̂1)Gε(ε̂1) +
ˆ ε̂1

ε̂λ

(ε̂1 − ε̂λ) dGε

}
+

(1 − λ)σ2t

{ˆ ε̂2

ε

(ε̂2 − ε) dGε + (ε̂λ − ε̂2)Gε(ε̂2) +
ˆ ε̂λ

ε̂2

(ε̂λ − ε̂2) dGε

}
,

where the inequality sign comes from
´ ε̂1

ε̂λ
(ε− ε̂λ) dGε ≤

´ ε̂1
ε̂λ

(ε̂1 − ε̂λ) dGε and
´ ε̂λ

ε̂2
(ε̂λ − ε) dGε ≤´ ε̂λ

ε̂2
(ε̂λ − ε̂2) dGε. Substituting for the definitions of h(σ1t) = σ1t

´ ε̂1
ε

(ε̂1 − ε) dGε and h(σ2t) =
σ2t

´ ε̂2
ε

(ε̂2 − ε) dGε, we get:

h(σλt) ≤ λh(σ1t) + (1 − λ)h(σ2t) + λσ1t {(ε̂λ − ε̂1)Gε(ε̂λ)} + (1 − λ)σ2t {(ε̂λ − ε̂2)Gε(ε̂λ)} =

λh(σ1t)+(1−λ)h(σ2t)+Gε(ε̂λ) (λσ1t (ε̂λ − ε̂1) + (1 − λ)σ2t (ε̂λ − ε̂2)) = λh(σ1t)+(1−λ)h(σ2t),

where for the last equality we use equation (A.21) to show that

λσ1t (ε̂λ − ε̂1) + (1 − λ)σ2t (ε̂λ − ε̂2) = ε̂λ (λσ1t + (1 − λ)σ2t) − λσ1tε̂1 − (1 − λ)σ2tε̂2 = 0.

(b) Rs
t+1 > Rd

t (1 − γt): it implies that ε̂1 < ε̂λ < ε̂2

h(σλt) = (λσ1t + (1 − λ)σ2t)
{ˆ ε̂(σλt)

ε

(ε̂(σλt) − ε) dGε

}
=

λσ1t

{ˆ ε̂1

ε

(ε̂λ − ε) dGε +
ˆ ε̂λ

ε̂1

(ε̂λ − ε) dGε

}
+

(1 − λ)σ2t

{ˆ ε̂2

ε

(ε̂λ − ε) dGε −
ˆ ε̂2

ε̂λ

(ε̂λ − ε) dGε

}
=

λσ1t

{ˆ ε̂1

ε

(ε̂2 − ε) dGε + (ε̂λ − ε̂1)Gε(ε̂1) +
ˆ ε̂λ

ε̂1

(ε̂λ − ε) dGε

}
+

(1 − λ)σ2t

{ˆ ε̂2

ε

(ε̂2 − ε) dGε + (ε̂λ − ε̂2)Gε(ε̂2) +
ˆ ε̂2

ε̂λ

(ε− ε̂λ) dGε

}
≤

λσ1t

{ˆ ε̂1

ε

(ε̂1 − ε) dGε + (ε̂λ − ε̂1)Gε(ε̂1) +
ˆ ε̂λ

ε̂1

(ε̂λ − ε̂1) dGε

}
+

(1 − λ)σ2t

{ˆ ε̂2

ε

(ε̂2 − ε) dGε + (ε̂λ − ε̂2)Gε(ε̂2) +
ˆ ε̂2

ε̂λ

(ε̂2 − ε̂λ) dGε

}
,
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where the inequality sign comes from
´ ε̂λ

ε̂1
(ε̂λ − ε) dGε ≤

´ ε̂λ

ε̂1
(ε̂λ − ε̂1) dGε and

´ ε̂2
ε̂λ

(ε− ε̂λ) dGε ≤´ ε̂2
ε̂λ

(ε̂2 − ε̂λ) dGε. Substituting for the definitions of h(σ1t) = σ1t

´ ε̂1
ε

(ε̂1 − ε) dGε and h(σ2t) =
σ2t

´ ε̂2
ε

(ε̂2 − ε) dGε, we get:

h(σλt) ≤ λh(σ1t) + (1 − λ)h(σ2t) + λσ1t {(ε̂λ − ε̂1)Gε(ε̂λ)} +

(1 − λ)σ2t {(ε̂λ − ε̂2)Gε(ε̂λ)} = λh(σ1t) + (1 − λ)h(σ2t)+

Gε(ε̂λ) (λσ1t (ε̂λ − ε̂1) + (1 − λ)σ2t (ε̂λ − ε̂2)) = λh(σ1t) + (1 − λ)h(σ2t),

where the last equality follows from the same reasoning employed in the previous case.

(c) Rs
t+1 = Rd

t (1 − γt). Hence, ε̂(σt) = 0 and

h(σt) = σt

[ˆ 0

ε

(0 − ε) dGε

]
,

which is linear in σt

2. We found in step 1 that h(σt, R
s
t+1) is convex in σt for each Rs

t+1 ∈ R. Consider P (ω) ≥ 0 for each
Rs

t+1(ω) ∈ R. Then the following function3:
ˆ

Ω
h
(
σt, R

s
t+1(ω)

)
P (dω) = Et h(σt, R

s
t+1) ≡ H(σt)

is convex in σt. It follows directly from the linearity of the expectation operator which puts a non-
negative weight on every realization of Rs

t+1 and the fact that the sum of convex functions is a convex
function. Therefore, Π(σt) is convex in σt.

Since the expected dividend function is defined as the difference between expected net worth and the
initial equity investment (in other words, it an affine transformation of expected net worth), that does not
depend on σt, i.e., Ω(σt; lt, dt, et) ≡ Π(σt) − et, the convexity of Π(σt) guarantees that Ω(σt; lt, dt, et) is
convex. □

A.2.7 Safe and Risky Banks

The results established in the preceding section imply that at any one time, depending on the state of
the economy and the realization of aggregate shocks, only one type of bank may exist, either the risky bank
or the safe bank. However, we have not been able to rule out analytically that risky and safe banks may
coexist. Accordingly, we allow for this possibility in the numerical solution of the model. Nevertheless, in
our model simulations, we have not found any such case.

We let µt denote the fraction of banks with risky portfolios (banks that choose σt = σ) at date t; the
remaining fraction 1 − µt are safe banks (σt = σ).

The fraction µt is endogenously determined by equity positions of households: we have µt = Er
t

Er
t +Es

t
.

At any point in time, the economy may be in a safe equilibrium (with µt = 0), a risky equilibrium (with
µt = 1), or a mixed equilibrium (with 0 < µt < 1).

3Linearity in σt for one particular value of Rs
t+1 can be considered as a weakly convex function, so it does

not change the nature of the argument
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Each bank within a group (safe or risky) is alike and solves the same maximization problem in which it
chooses lit, di

t, e
i
t according to its type i ∈ {s, r}.

A.3 The Non-Financial Firm’s Problem
We consider the problem of safe firms before that of risky firms.

A.3.1 Safe Firms

Let πs
t+1 denote the revenue of a safe firm in period t+ 1 net of expenses:

πs
t+1 = ys

t+1 + (1 − δ)Qtk
s
t+1 −Wt+1h

s
t+1 −Rs

t+1l
f,s
t .

In this notation, the problem of the safe firm is to

max
lf,s
t ,ks

t+1

Et

{
max
hs

t+1

πs
t+1

}
.

The first-order condition for maxhs
t+1

πs
t+1 is ∂πs

t+1
∂hs

t+1
= 0. It implies that

Wt+1 =
∂ys

t+1
∂hs

t+1
= (1 − α)

ys
t+1
hs

t+1
= (1 − α)At+1

(
ks

t+1
hs

t+1

)α

, (A.22)

hs
t+1 = (1 − α)

ys
t+1

Wt+1
= (1 − α)

At+1
(
ks

t+1
)α (

hs
t+1
)1−α

Wt+1
. (A.23)

Accordingly, the safe firm’s Lagrangian is:

Lsafe =Et

{
At+1

(
ks

t+1
)α (

hs
t+1
)1−α + (1 − δ)Qt+1k

s
t+1 −Wt+1h

s
t+1 −Rs

t+1l
f,s
t

}
+

λs
htEt

{
(1 − α)

At+1
(
ks

t+1
)α (

hs
t+1
)1−α

Wt+1
− hs

t+1

}
+ λs

lt

(
lf,s
t −Qtk

s
t+1

)
.

Notice that there is no expectation operator on the Lagrangian multipliers because those constraints hold
under every state of nature. The problem implies the following first-order conditions

∂Lsafe

∂lf,s
t

= −Et

[
Rs

t+1
]

+ λs
lt = 0,

∂Lsafe

∂ks
t+1

= Et

[
α
ys

t+1
ks

t+1
+ (1 − δ)Qt+1

]
+ λs

ht (1 − α)αEt

[
At+1

Wt+1

(
ks

t+1
hs

t+1

)α−1
]

− λs
ltQt = 0,

∂Lsafe

∂hs
t+1

= (1 − α)
At+1

(
ks

t+1
)α (

hs
t+1
)1−α

Wt+1
−Wt+1 + λs

ht

[
(1 − α)2 At+1

Wt+1

(
ks

t+1
hs

t+1

)α

− 1
]

= 0.

Combining ∂Lsafe

∂hs
t+1

= 0 with equation (A.23) yields λs
ht = 0. Then, plugging ∂Lsafe

∂lf,s
t

= 0 into ∂Lsafe

∂ks
t+1

for λs
lt,

we get

Et

[
Rs

t+1
]
Qt = Et

[
α
ys

t+1
ks

t+1
+ (1 − δ)Qt+1

]
.

Consider the zero-profit condition of the safe firm under all states of nature. Since the production function
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has constant returns to scale,

ys
t+1 =

∂ys
t+1

∂ks
t+1

ks
t+1 +

∂ys
t+1

∂hs
t+1

hs
t+1 = αAt+1

(
ks

t+1
hs

t+1

)α−1
ks

t+1 +Wt+1h
s
t+1,

where we use equation (A.23) to substitute for Wt+1 in the last equality. Plugging the expression of ys
t+1

into πs
t+1 = 0 and using Qtk

s
t+1 = lf,s

t , we find that:

αAt+1

(
ks

t+1
hs

t+1

)α−1
ks

t+1 + (1 − δ)Qt+1k
s
t+1 −Rs

t+1Qtk
s
t+1 = 0.

Since ks
t+1 > 0, we can divide by ks

t+1 to get

Rs
t+1Qt = αAt+1

(
ks

t+1
hs

t+1

)α−1
+ (1 − δ)Qt+1 (A.24)

under all states of nature. This condition implies

Rs
tQt−1 = αAt

(
ks

t

hs
t

)α−1
+ (1 − δ)Qt.

A.3.2 Risky Firms

Let πr
t+1 denote the revenue of a risky firm in period t+ 1 net of expenses:

πr
t+1 = yr

t+1 + (1 − δ)Qtk
r
t+1 −Wt+1h

r
t+1 −Rr

t+1l
f,r
t .

In this notation, the problem of the risky firm is to

max
lf,r
t ,kr

t+1

Et

{
max
hr

t+1

πr
t+1

}
.

The first-order condition for maxhr
t+1

πr
t+1 is ∂πr

t+1
∂hr

t+1
= 0. It implies that

Wt+1 =
∂yr

t+1
∂hr

t+1
= (1 − α)At+1

(
kr

t+1
hr

t+1

)α

, (A.25)

hr
t+1 = (1 − α)

At+1
(
kr

t+1
)α (

hr
t+1
)1−α

Wt+1
. (A.26)

Accordingly, the risky firm’s Lagrangian is:

Lrisky =Et

[
At+1

(
kr

t+1
)α (

hr
t+1
)1−α + εt+1k

r
t+1 + (1 − δ)Qt+1k

r
t+1 −Wt+1h

r
t+1 −Rr

t+1l
f,r
t

]
+

λr
htEt

[
(1 − α)

At+1
(
kr

t+1
)α (

hr
t+1
)1−α

Wt+1
− hr

t+1

]
+ λr

lt

(
lf,r
t −Qtk

r
t+1

)
.

Notice that there is no expectation operator on the Lagrangian multipliers because those constraints
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hold under every state of nature. The problem implies the following first-order conditions

∂Lrisky

∂lf,r
t

= −Et

[
Rr

t+1
]

+ λr
lt = 0,

∂Lrisky

∂kr
t+1

= Et

[
αAt+1

(
kr

t+1
hr

t+1

)α−1
+ εt+1 + (1 − δ)Qt+1

]
+

λr
htEt

[
α (1 − α) At+1

Wt+1

(
kr

t+1
hr

t+1

)α−1
]

− λr
ltQt = 0,

∂Lrisky

∂hr
t+1

= (1 − α)At+1

(
kr

t+1
hr

t+1

)α

−Wt+1 + λr
ht

[
(1 − α)2 At+1

Wt+1

(
kr

t+1
hr

t+1

)α

− 1
]

= 0.

Equation (A.25) together with ∂Lrisky

∂hr
t+1

= 0 yield λr
ht = 0. Plugging ∂Lrisky

∂lf,r
t

= 0 into ∂Lrisky

∂kr
t+1

for λr
lt, we get

Et

[
Rr

t+1
]
Qt = Et

[
αAt+1

(
kr

t+1
hr

t+1

)α−1
+ (1 − δ)Qt+1 + εt+1

]
.

Combining equation (A.22) with equation (A.25):

ks
t+1
hs

t+1
=
kr

t+1
hr

t+1
(A.27)

under all states of nature. But remember that the first-order condition of the safe firm implies

Et

[
Rs

t+1
]
Qt = Et

[
αAt+1

(
ks

t+1
hs

t+1

)α−1
+ (1 − δ)Qt+1

]
.

Therefore
Et

[
Rs

t+1
]
Qt = Et

[
Rs

t+1Qt + εt+1
]
.

Consider the zero-profit condition of the risky firm under all states of nature.

πr
t+1 = yr

t+1 + (1 − δ)Qtk
r
t+1 −Wt+1h

r
t+1 −Rr

t+1l
f,r
t =

yr
t+1 + (1 − δ)Qtk

r
t+1 − (1 − α)At+1

(
kr

t+1
)α (

hr
t+1
)1−α −Rr

t+1l
f,r
t =

αAt+1
(
kr

t+1
)α (

hr
t+1
)1−α + εt+1k

r
t+1 + (1 − δ)Qtk

r
t+1 −Rr

t+1l
f,r
t =

αAt+1

(
kr

t+1
hr

t+1

)α−1
kr

t+1 + εt+1k
r
t+1 + (1 − δ)Qtk

r
t+1 −Rr

t+1l
f,r
t = 0,

where we use equation (A.26) to substitute for Wt+1h
r
t+1. Using equation (A.24) together with equation

(A.27), we can express

αAt+1

(
kr

t+1
hr

t+1

)α−1
= Rs

t+1Qt − (1 − δ)Qt+1,

that holds under all states of nature. Plugging it into the zero-profit condition and using Qtk
r
t+1 = lf,r

t , we
find that:

Rs
t+1Qtk

r
t+1 − (1 − δ)Qt+1k

r
t+1 + εt+1k

r
t+1 + (1 − δ)Qtk

r
t+1 −Rr

t+1Qtk
r
t+1 = 0.
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Since kr
t+1 > 0, we can divide by kr

t+1 to get

Rr
t+1Qt = Rs

t+1Qt + εt+1

under all states of nature. This condition implies

Rr
tQt−1 = Rs

tQt−1 + εt.

A.3.3 Aggregating Across Firms

Here we show that we can aggregate individual firms into two representative firms. Let ki
j,t denote the

capital chosen by firm i that is financed by borrowing from bank j. Both i and j lie within the continuum
of measure 1 of banks and firms, respectively. In this notation, equation (A.27) is written as

ki
j,t+1

hi
j,t+1

= kt+1

ht+1
, (A.28)

for all j ∈ [0, 1] and i ∈ [0, 1]. Each firm chooses the same capital-to-labor ratio independently of the type
of bank it borrows from.

Note that σt is the fraction of risky firms at date t; the remaining fraction 1 − σt of firms are safe firms.
Let’s index firms as follows: firm j1, with j1 ∈ [0, σt], can only access a risky technology subject to both
aggregate and idiosyncratic shocks; firm j2, with j2 ∈ [σt, 1] has access to a safe production technology
subject to aggregate shocks only. Since there are no equilibria with σ < σt < σ, the fraction of risky firms
is linked to the fraction of banks with risky portfolios as follows:

σt = (1 − µt)σ + µtσ.

Define the following objects: Let Ks
s,t+1 =

´ 1
σt

´ 1
µt
ki

j,t+1djdi be the total capital allocated to the safe
technology and financed by borrowing from the banks that choose a fraction σ of risky projects. Let
Ks

r,t+1 =
´ 1

σt

´ µt

0 ki
j,t+1djdi be the total capital allocated to the safe technology and financed by borrowing

from the banks that choose a fraction σ of risky projects. We let Ks
t+1 denote the total capital allocated to

the safe technology. Thus,

Ks
t+1 =

1ˆ

σt

1ˆ

0

ki
j,t+1djdi = Ks

s,t+1 +Ks
r,t+1,

Let Kr
s,t+1 =

´ σt

0
´ 1

µt
ki

j,t+1djdi be the total capital allocated to the risky technology and financed by bor-
rowing from the banks that choose a fraction σ of risky projects. Let Kr

r,t+1 =
´ σt

0
´ µt

0 ki
j,t+1djdi be the total

capital allocated to the safe technology and financed by borrowing from the banks that choose a fraction σ

of risky projects. We let Kr
t+1 denote the total capital allocated to the risky technology. Thus,

Kr
t+1 =

σtˆ

0

1ˆ

0

ki
j,t+1djdi = Kr

s,t+1 +Kr
r,t+1,

The same upper and lower case notation applies to labor, i.e. Hs
s,t+1 =

´ 1
σt

´ 1
µt
hi

j,t+1djdi; Hs
r,t+1 =´ 1

σt

´ µt

0 hi
j,t+1djdi; Hr

s,t+1 =
´ σt

0
´ 1

µt
hi

j,t+1djdi; Hr
r,t+1 =

´ σt

0
´ µt

0 hi
j,t+1djdi.
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Safe representative firm produces:

Y s
t =

1ˆ

σt−1

1ˆ

0

At

(
ki

j,t

)α (
hi

j,t

)1−α
djdi =

1ˆ

σt−1

1ˆ

0

F
(
ki

j,t, h
i
j,t

)
djdi =

Using that the technology has Constant Returns to Scale:

=
1ˆ

σt−1

1ˆ

0

[
Fki

j,t

(
ki

j,t, h
i
j,t

)
ki

j,t + Fhi
j,t

(
ki

j,t, h
i
j,t

)
hi

j,t

]
djdi =

where Fki
j,t

(
ki

j,t, h
i
j,t

)
and Fhi

j,t

(
ki

j,t, h
i
j,t

)
denote the partial derivative of F

(
ki

j,t, h
i
j,t

)
with respect to ki

j,t

and hi
j,t, respectively. Since these partial derivatives are homogeneous of degree zero, we can express them

in term of capital-labor ratio, i.e.

=
1ˆ

σt−1

1ˆ

0

[
fki

j,t

(
ki

j,t

hi
j,t

)
ki

j,t + fhi
j,t

(
ki

j,t

hi
j,t

)
hi

j,t

]
djdi = Plugging equation (A.28) =

=
1ˆ

σt−1

1ˆ

0

[
fkt

(
kt

ht

)
ki

j,t + fht

(
kt

ht

)
hi

j,t

]
djdi =

fkt

(
kt

ht

) 1ˆ

σt

1ˆ

0

ki
j,tdjdi

+ fht

(
kt

ht

) 1ˆ

σt

1ˆ

0

hi
j,tdjdi

 = fkt

(
kt

ht

)
Ks

t + fht

(
kt

ht

)
Hs

t =

Since Ks
s,t

Hs
s,t

= Ks
r,t

Hs
r,t

= kt

ht
,then Ks

t

Hs
t

ht

kt
=
(

Ks
s,t+Ks

r,t

Hs
s,t+Hs

r,t

)
Hs

r,t

Ks
r,t

= 1. Therefore Ks
t

Hs
t

= kt

ht
.

= fKs
t

(
Ks

t

Hs
t

)
Ks

t + fHs
t

(
Ks

t

Hs
t

)
Hs

t .

Hence, we obtain that
Y s

t = At (Ks
t )α (Hs

t )1−α
. (A.29)

Moving to the risky representative firm,

Y r
t =

σt−1ˆ

0

1ˆ

0

[
At

(
ki

j,t

)α (
hi

j,t

)1−α + εi
j,tk

i
j,t

]
djdi =

σt−1ˆ

0

1ˆ

0

F
(
ki

j,t, h
i
j,t

)
djdi+

σt−1ˆ

0

1ˆ

0

εi
j,tk

i
j,tdjdi.

Note that similar steps described above apply to the first term in the summation, so
that

´ σt−1
0

´ 1
0 F

(
ki

j,t, h
i
j,t

)
djdi = At (Kr

t )α (Hr
t )1−α. To express the second term, notice that´ σt−1

0
´ 1

0 ε
i
j,tk

i
j,tdjdi = −ξ. Moreover, since each risky firm solves the same maximization problem, it

chooses the same amount of capital independently of the type of bank it borrows from. Therefore,´ σt−1
0

´ 1
0 ε

i
j,tk

i
j,tdjdi = −ξKr

t . Hence,

Y r
t = At (Kr

t )α (Hr
t )1−α − ξKr

t . (A.30)
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A.3.4 Capital Producing Firms

At the end of period t, goods producing firms sell their capital to competitive capital producing firms.
Letting Ig

t denote gross investment, the evolution of capital follows

It = ηt

[
1 − ϕ

2

(
Ig

t

Ig
t−1

− 1
)2
]
Ig

t ,

where ηt is a shock to investment-specific technology (ISP), and ϕ is a measure of the severity of investment
adjustment costs. The aggregate capital stock evolves according to

Ks
t+1 +Kr

t+1 = It + (1 − δ) (Ks
t +Kr

t ) .

The capital producing firms are owned by households, and solve the problem

max
Ig

t+i

Et

∞∑
i=0

ψt,t+i

{
ηt+iQt+i

[
1 − ϕ

2

(
Ig

t+i

Ig
t+i−1

− 1
)2]

Ig
t+i − Ig

t+i

}
,

where ψt,t+i = β λct+i

λct
is the stochastic discount factor of the households.

ηtQt

[
1 − ϕ

2

(
Ig

t

Ig
t−1

− 1
)2
]

−ηtQtϕ

(
Ig

t

Ig
t−1

− 1
)

Ig
t

Ig
t−1

− 1+

βEt

[
ηt+1

λct+1

λct
Qt+1ϕ

(
Ig

t+1
Ig

t

− 1
)
Ig

t+1

(Ig
t )2 I

g
t+1

]
= 0.

A.4 The Government
The government levies the tax to fully compensate for the loss to the deposit insurance fund due to

rescue of defaulted banks.

Tt = −

(
Rd

t−1Dt−1
σt−1Lt−1

−
Rs

t
σt−1

)
Qt−1ˆ

−∞

((
Rs

t + σt−1εt

Qt−1

)
Lt−1 −Rd

t−1Dt−1

)
dG(εt) =

−

 ∞̂

−∞

((
Rs

t + σt−1εt

Qt−1

)
Lt−1 −Rd

t−1Dt−1

)
dG(εt)−

∞̂

(
Rd

t−1Dt−1
σt−1Lt−1

−
Rs

t
σt−1

)
Qt−1

((
Rs

t + σt−1εt

Qt−1

)
Lt−1 −Rd

t−1Dt−1

)
dG(εt)

 =
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Note that in the square bracket the first term equals
(
Rs

t − σt−1ξ
Qt−1

)
Lt−1 + Rd

t−1Dt−1. We have already
calculated the second term. Therefore,

Tt = σt−1Lt−1

Qt−1

τt√
2π

exp
(

−
(
Rd

t−1 (1 − γt−1)Qt−1 −Rs
tQt−1 + ξσt−1

σt−1
√

2τt

)2)
−
(
Rs

t − σt−1ξ

Qt−1

)
Lt−1 +Rd

t−1Dt−1 +

1
2Lt−1

(
Rs

t − σt−1ξ

Qt−1
− (1 − γt−1)Rd

t−1

)[
1 − erf

(
Rd

t−1 (1 − γt−1)Qt−1 −Rs
tQt−1 + ξσt−1

σt−1
√

2τt

)]
,

which can be rewritten as

Tt = σt−1Lt−1

Qt−1

τt√
2π

exp
(

−
(
Rd

t−1 (1 − γt−1)Qt−1 −Rs
tQt−1 + ξσt−1

σt−1
√

2τt

)2)
− (A.31)

1
2

(
Rs

tLt−1 − σt−1ξ

Qt−1
Lt−1 −Rd

t−1Dt−1

)[
1 + erf

(
Rd

t−1 (1 − γt−1)Qt−1 −Rs
tQt−1 + ξσt−1

σt−1
√

2τt

)]
.

A.5 Resource Constraints
The aggregate loans to the (representative) safe firm come from two sources: 1) from all safe banks (of

measure 1 − µt) that allocate 1 − σ share of their loan portfolio to safe projects and 2) from all risky banks
(of measure µt) that allocate 1 − σ share of their loan portfolio to safe projects. Therefore, the equilibrium
conditions linking our bank-level and firm-level variables representing loans are

QtK
s
t+1 = (1 − σ) (1 − µt) lst + (1 − σ)µtl

r
t .

Similarly,
QtK

r
t+1 = σ (1 − µt) lst + σµtl

r
t .

The aggregate bank loans are linked to the individual bank loans by: Lr
t = µtl

r
t and Ls

t = (1 − µt)lst .
Therefore, we can describe the latter two equations by using aggregate loans

QtK
s
t+1 = (1 − σ)Ls

t + (1 − σ)Lr
t ,

QtK
r
t+1 = σLs

t + σLr
t .

The equity positions taken by households, in turn, determine the equity positions of individual banks:
Er

t = µte
r
t and Es

t = (1−µt)es
t . The returns on the equity positions taken by households at date t are linked

to the dividends paid by banks at date t+ 1. We have:

Er
tR

e,r
t+1 = (ωr

1 + ωr
2)Lr

t ,

Es
tR

e,s
t+1 = (ωs

1 + ωs
2)Ls

t ,

where we use the fact that max
[
nwr

t+1, 0
]

is linear in loans; ω1 and ω2 were defined in equations (26) and
(27). Deposits held by households are issued by (safe and risky) banks: Dt = Ds

t +Dr
t where Ds

t = Ls
t −Es

t

and Dr
t = Lr

t − Er
t .

The equilibrium conditions linking our aggregate and individual firm-specific variables are straightfor-
ward, but cumbersome in terms of notation. We state the conditions in Appendix B. The market-clearing
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conditions for labor, capital, and goods are

Hs
t +Hr

t = 1,

Ks
t +Kr

t = Kt,

and
Y s

t + Y r
t = Ct + Ig

t .
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B List of Equilibrium Conditions
From the first-order conditions for the household problem, derived in Section A.1

(Ct − κCt−1)−ςc − βκEt (Ct+1 − κCt)−ςc − λct = 0 (B.1)

ς0D
−ςd
t − λct + Etβλct+1R

d
t = 0, (B.2)

−λct + Etβλct+1R
e,s
t+1 + ζs

t = 0, (B.3)

−λct + Etβλct+1R
e,r
t+1 + ζr

t = 0. (B.4)

From Section A.2.6, we know that we need to track two types of banks, safe and risky banks:

σs
t = σ, (B.5)

σr
t = σ. (B.6)

From the bank problem in Section A.2, for ∀i ∈ {s, r}

lit = di
t + ei

t. (B.7)

From the proof that capital requirements always bind in Section A.2.2, for ∀i ∈ {s, r}

ei
t = γtl

i
t. (B.8)

From the combined first-order conditions for banks in Section A.2.3, for ∀i ∈ {s, r}

γt − χi
2t = Et

{
β λct+1

λct

[
σi

t

Qt

τt√
2π

exp
(

−
(

(Rd
t (1−γt)−Rs

t+1)Qt+ξσi
t

σi
t

√
2τt

)2
)

+ (B.9)

1
2

(
Rs

t+1 − σi
tξ

Qt
−Rd

t (1 − γt)
)[

1 − erf
(

(Rd
t (1−γt)−Rs

t+1)Qt+ξσi
t

σi
t

√
2τt

)]]}
,

χi
2tl

i
t = 0. (B.10)

From the zero-profit condition for banks derived in Section A.2.4, for ∀i ∈ {s, r}

Re,i
t+1 = 1

γt

{
σi

t

Qt

τt√
2π

exp
(

−
(

(Rd
t (1−γt)−Rs

t+1)Qt+ξσi
t

σi
t

√
2τt

)2
)

+ (B.11)

1
2

(
Rs

t+1 − σi
tξ

Qt
−Rd

t (1 − γt)
)[

1 − erf
(

(Rd
t (1−γt)−Rs

t+1)Qt+ξσi
t

σi
t

√
2τt

)]}
.

Definition of the share of risky banks, from the aggregation across banks in Section A.2.7

µt = Er
t

Es
t + Er

t

. (B.12)

From the problem of safe firms in Section A.3.1

Rs
t = αAt

Qt

(
Ks

t

Hs
t

)α−1
+ (1 − δ) Qt+1

Qt
. (B.13)
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From the problem of risky firms in Section A.3.2

Rr
t = Rs

t + εt

Qt−1
. (B.14)

From Equation A.22 in Section A.3.1 and Section A.3.3

Wt = (1 − α) Y s
t

Hs
t
. (B.15)

From the aggregation across safe and risky firms in Section A.3.3

Ks
t

Hs
t

= Kr
t

Hr
t
, (B.16)

Y s
t = At (Ks

t )α (Hs
t )1−α

, (B.17)

Y r
t = At (Kr

t )α (Hr
t )1−α − ξKr

t . (B.18)

From the problem of capital producing firms in Section A.3.4

Kt+1 = It + (1 − δ)Kt, (B.19)

It = ηt

[
1 − ϕ

2

(
Ig

t

Ig
t−1

− 1
)2
]
Ig

t , (B.20)

ηtQt

[
1 − ϕ

2

(
Ig

t

Ig
t−1

− 1
)2
]

− ηtQtϕ
(

Ig
t

Ig
t−1

− 1
)

Ig
t

Ig
t−1

− 1 + (B.21)

βEt

[
ηt+1

λct+1
λct

Qt+1ϕ
(

Ig
t+1
Ig

t
− 1
)

Ig
t+1

(Ig
t )2 I

g
t+1

]
= 0.

The tax for the deposit insurance scheme is derived in Section A.4

Tt = Lt−1

{
σt−1
Qt−1

τt√
2π

exp
(

−
(

(Rd
t−1(1−γt−1)−Rs

t )Qt−1+ξσt−1

σt−1
√

2τt

)2
)

− (B.22)

1
2

(
Rs

t −Rd
t−1 (1 − γt−1) − ξσt−1

Qt−1

)[
1 + erf

(
(Rd

t−1(1−γt−1)−Rs
t )Qt−1+ξσt−1

σt−1
√

2τt

)]}
.

Using the resource constraints from Section A.5

Ls
t = (1 − µt) lst , (B.23)

Lr
t = µtl

r
t , (B.24)

Ei
t = γtL

i
t ∀i ∈ {s, r} , (B.25)

Li
t = Di

t + Ei
t ∀i ∈ {s, r} , (B.26)

QtK
s
t+1 = (1 − σ)Ls

t + (1 − σ)Lr
t , (B.27)

QtK
r
t+1 = σLs

t + σLr
t , (B.28)

Dt = Ds
t +Dr

t , (B.29)

Kt = Ks
t +Kr

t , (B.30)

Hs
t +Hr

t = 1, (B.31)

Y s
t + Y r

t = Ct + Ig
t . (B.32)
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From the first-order conditions of the bank problem in Section A.2.1, the Lagrange multipliers χi
2t on

the loan constraints lst > 0, where i ∈ {s, r}, govern the transition between different regimes, demarcated as
follows:

1. safe regime: χs
2t = 0, lst > 0, χr

2t > 0, and lrt = 0;

2. risky regime: χs
2t > 0, lst = 0, χr

2t = 0, and lrt > 0;

3. mixed regime: χs
2t = 0, lst > 0, χr

2t = 0, and lrt > 0.

These conditions, together with binding capital requirements, also imply whether the inequality constraints
on the household bank equity holdings bind or not. Accordingly,

1. safe regime: ζs
t = 0, Es

t > 0, ζr
t > 0, Er

t = 0 =⇒ µt = 0;

2. risky regime: ζs
t > 0, Es

t = 0, ζr
t = 0, and Er

t > 0 =⇒ µt = 1;

3. mixed regime: ζs
t = 0, Es

t > 0, ζr
t = 0, and Er

t > 0 =⇒ 0 < µt < 1;

and remember that µt is the share of risky bank equity in total bank equity. Notice that in the safe regime,
lrt = 0 and the binding capital requirement make Er

t = 0 redundant; in the risky regime, lst = 0 and the
binding capital requirement make Es

t = 0 redundant; and in the mixed regime, the fact that χr
2t = 0 and

that ζr
t = 0 together with Equation B.4 and Equation B.11, make Equation B.9 redundant.

Finally, in the numerical implementation of the model, we use a guess-and-verify approach to determine
the regime sequence expected to occur after the realization of the aggregate shocks period by period (see
(Guerrieri & Iacoviello, 2015)).In the iterative procedure to determine the regime guesses, the following
conditions prompt a new guess:

1. safe regime exit: lst < 0,

2. risky regime exit: lrt < 0,

3. mixed regime exit: lst < 0 or lrt < 0.
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C Discussion of the Excessive Risk-Taking Mechanism
Following our results derived in Appendix A.2.5, we can decompose expected dividends into the following

components:
Ω (µt; lt, dt, et) = Et {ψt,t+1lt [ω1 + ω2−]} − γtlt,

where

[ω1 + ω2] =



(
Rs

t+1 −Rd
t (1 − γt) − ξσt

Qt

)(
1 −G(ε∗

t+1)
)︸ ︷︷ ︸

non-defaulted︸ ︷︷ ︸
ω1 ≡ returns from a loan
portfolio with riskiness σt

+
(
σt

Qt

)
τt√
2π

exp
(

−
(
ε∗

t+1 + ξ

τt

√
2

)2
)

︸ ︷︷ ︸
ω2 ≡ bonus from
projects volatility


,

and the cutoff point ε∗
t+1 is defined by Rd

t (1 − γt)Qt −Rs
t+1Qt = σtε

∗
t+1.

The first component, ω1, represents loan returns of riskiness σt controlling for the variance of idiosyncratic
shock (when τ is taken as given). The bank trades off the benefits from limited liability and deposit
insurance with a smaller profitability of riskier projects. The term ξσt

Qt
reflects, in expectation, the reduction

of loan returns for the bank holding σt share of risky projects. The bank receives net income on loans,
Rs

t+1 − Rd
t (1 − γt) − ξσt

Qt
, if it does not default on deposits which happens with probability 1 − G(ε∗

t+1). If
the bank defaults, it gets zero, i.e. 0 ·G(ε∗

t+1) which is not shown in the expression explicitly.
The second component, ω2, represents the extra effect of σt on expected net worth owing to more

dispersed returns from projects. In fact, ω2 is strictly increasing in τ : the bank views projects as a call
option the value of which rises with volatility associated with higher upside. Limited liability bounds the
payoff to zero in the worst case scenario.

Risk-taking incentives depend on the difference between returns on safe loans and returns on deposits.
Table C1 illustrates the effects of greater risk-taking on the components of dividends for each realization of
the aggregate returns. We map aggregate returns into states of nature and consider two cases depending on
the sign of ε∗

t+1. The aggregate returns influence the value of the shield of limited liability. Risk amplifies
the effect of the idiosyncratic shock. So, in every state of nature, the bank’s choice of risk is determined by
the expected effect of the idiosyncratic shock on the value of the shield of limited liability and returns on
loans. The up-turn arrow, ⇑, indicates that greater risk-taking increases the corresponding component of
bank’s dividends. The down-turn arrow, ⇓, means that the corresponding component of bank’s dividends
decreases with greater risk-taking. Two arrows turned in the opposite directions, ⇑⇓, signify that the effect
of greater risk-taking is undetermined and depends the parameterization.

First, ε∗
t+1 > 0 indicates that the bank makes losses on safe loans. It happens in those states of nature

where the net income from the zero-risk portfolio is negative, so the bank is behind the shield of limited
liability. By accepting more risk, the bank is more likely to get a positive net return under a favorable
realization of the idiosyncratic shock as risk acts like a leverage on the size of the shock. Therefore, 1−G(ε∗

t+1)
rises. This balances with smaller returns on a portfolio with more risky loans, i.e. Rs

t+1 −Rd
t (1 − γt) − ξσt

Qt

goes down. Similarly, gambling on more dispersed returns allows the bank to move away from a zero return
that comes from the limited liability to some positive return that is accompanied by less frequent defaults.
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Table C1: Illustrating the Effects of Higher Risk on Dividends.

States of nature where
Effects on ω1 Effects on ω2

Rs
t+1 −Rd

t (1 − γt) − ξσt

Qt
1 −G(ε∗

t+1)
Rs

t+1 < Rd
t (1 − γt) ⇔ ε∗

t+1 > 0 ⇓ ⇑ ⇑

Rs
t+1 > Rd

t (1 − γt) ⇔ ε∗
t+1 < 0 ⇓ ⇓

if ε∗
t+1 > −ξ, then ⇑⇓

if ε∗
t+1 ⩽ −ξ, then ⇑

So, the effect of σt on expected dividends from ω2 is positive.
Second, ε∗

t+1 < 0 shows that the bank makes positive profits on safe loans. The bank is more likely to
default when it takes on more risk because any negative idiosyncratic shock would be amplified by risk. The
bank internalizes that riskier projects are less profitable. Therefore, the overall effect of greater risk on ω1 is
negative when ε∗

t+1 < 0.
Then consider the bonus from projects volatility. If −ξ < ε∗

t+1 < 0, there are two contrasting forces.
On the one hand, the bank always benefits from limited liability that makes the variance of projects returns
attractive. On the other hand, the bank is more concerned about (and more vulnerable to) the variability of
returns in the situation when taking on more risk would result in zero payoff instead of some positive payoff
achieved by smaller risk. It occurs when −ξ < ε∗

t+1 < 0. In these states of nature, the bank requires greater
than average realization of the idiosyncratic shock in order to get a positive return. Call this type of shock a
good idiosyncratic shock. This shock happens with probability smaller than 0.5. Define a bad idiosyncratic
shock as a complement to a good idiosyncratic shock. An increase in risk increases the profits under a good
shock. It captures the benefits from greater upside. At the same time, an increase in risk makes it more
likely to get a bad shock. The bank trades off marginal profits coming from a good shock with marginal
losses coming from the reduction of profits due to more defaults. Since the probability of the latter is greater
than the probability of the former, the losses from defaults can dominate the benefits from greater volatility.
This force goes in the opposite direction when ε∗

t+1 ⩽ −ξ. The difference is that here the bank is more likely
to get a good shock than a bad shock. Therefore, the bank puts more weight on the benefits from risk-taking
than on its costs. It is verified mathematically that the effects of σt on ω2 is unambiguously positive when
ε∗

t+1 ⩽ −ξ.
In sum, we find that net returns on safe loans, Rs

t+1 −Rd
t (1 − γt), is the main driver for the bank’s choice

of risk. In the partial-equilibrium setting, we differentiate between three cases that characterize incentives
for risk-taking.

First, Rs
t+1 < Rd

t (1 − γt) applies to the states of nature where a relatively large negative aggregate shock
is realized. Two forces against the one that seems to be of lesser relevance make the bank benefit most from
taking risk. Second, −ξ < Rd

t (1 − γt) − Rs
t+1 < 0 applies to the states of nature where intermediate values

(not too large and not too small) of either negative or positive aggregate shock are realized. There are more
forces that lower incentives for risk. Third, Rd

t (1 − γt) −Rs
t+1 < −ξ applies to the states of nature where a

positive aggregate shock of a larger size is realized. Interestingly, there is a force associated with the bonus
from projects volatility that makes it possible for the bank to increase risk. The choice of risk depends on
the strength of that force, ω2, relative to the negative exposure of returns from a loan portfolio to risk, ω1.
It still remains a quantitative question to find out how risk-taking is determined in the general equilibrium
set-up.

Capital requirements affect risk-taking through a change in ε∗
t+1. When γt increases, ε∗

t+1 falls. It means
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that the bank will be more likely to find itself in the states of nature where ε∗
t+1 is negative. It forces the

bank to keep more skin in the game, make the shield of limited liability less attractive and prevent the switch
into financing risky projects.
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D Consumption Equivalent Variation
Let Welfopt be the welfare level attained under the optimal policy:

Welfopt = E

∞∑
t=0

βt

[
(Copt,t − κCopt,t−1)1−ςc − 1

1 − ςc
+ ς0

D1−ςd
opt,t − 1
1 − ςd

]
.

And let Welfrule be the welfare level attained under a simple rule:

Welfrule = E

∞∑
t=0

βt

[
(Crule,t − κCrule,t−1)1−ςc − 1

1 − ςc
+ ς0

D1−ςd

rule,t − 1
1 − ςd

]
.

For given paths of consumption and deposits, we are interested in sizing a permanent tax ∆ applied to the
consumption utility stream under the optimal policy such that the level of welfare under the optimal policy
with the tax is equal to the level of welfare under the suboptimal rule. Thus,

E

∞∑
t=0

βt

[
((1 − ∆) (Copt,t − κCopt,t−1))1−ςc − 1

1 − ςc
+ ς0

D1−ςd
opt,t − 1
1 − ςd

]
= Welfrule,

which can be rewritten as

E

∞∑
t=0

βt

[
(1 − ∆)1−ςc (Copt,t − κCopt,t−1)1−ςc − 1

1 − ςc
+ ς0

D1−ςd
opt,t − 1
1 − ςd

]
= Welfrule.

Taking out (1 − ∆)1−σc , we get

E

∞∑
t=0

βt

[
(1 − ∆)1−ςc

(Copt,t − κCopt,t−1)1−ςc − 1
1 − ςc

+ ς0
D1−ςd

opt,t − 1
1 − ςd

+ (1 − ∆)1−ςc − 1
1 − ςc

]
= Welfrule.

With some additional manipulations, we obtain

E

∞∑
t=0

βt

[(
(1 − ∆)1−ςc − 1

) (Copt,t − κCopt,t−1)1−ςc − 1
1 − ςc

+ (Copt,t − κCopt,t−1)1−ςc − 1
1 − ςc

+

ς0
D1−ςd

opt,t − 1
1 − ςd

+ (1 − ∆)1−ςc − 1
1 − ςc

]
= Welfrule.

Let Welfopt
C be the welfare from the consumption utility stream attained under the optimal policy,

Welfopt
C = E

∞∑
t=0

βt

[
(Copt,t − κCopt,t−1)1−ςc − 1

1 − ςc

]
.

Hence, (
(1 − ∆)1−ςc − 1

)
Welfopt

C +Welfopt + (1 − ∆)1−ςc − 1
(1 − β) (1 − ςc) = Welfrule.

From the equation above, we can derive ∆, the consumption equivalent variation:

(
(1 − ∆)1−ςc − 1

)(
Welfopt

C + 1
(1 − β) (1 − ςc)

)
+Welfopt = Welfrule,
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(1 − ∆)1−ςc − 1 = Welfrule −Welfopt(
Welfopt

C + 1
(1−β)(1−ςc)

) ,
(1 − ∆)1−ςc = 1 − Welfopt −Welfrule(

Welfopt
C + 1

(1−β)(1−ςc)

) ,

∆ = 1 −

1 − Welfopt −Welfrule(
Welfopt

C + 1
(1−β)(1−ςc)

)
 1

1−ςc

.
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